It Wasn’t Me, It Was the Prototype!

Towards a Formal Model of JavaScript Prototype Pollution

Mohammad M. Ahmadpanah, David Sands, and Musard Balliu

EEEEEEEEE

KTH Chalmers

ShiftLeft Workshop, Gothenburg
October 27,2025

JavaScript objects

Car.prototype

properties
methods

* Mutable collection of properties

— Values evaluated at runtime

* Prototype: object blueprint .. _poto /
— Reusing existing objects
— An object with a set of properties

and functions shared between
all objects of the same type luxury = new Car() classic = new Car()

— Exposed as regular programming construct
luxury[" proto_ "], classic. proto_, Car.prototype

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

snowy : Dog
__proto__ ®
age 5

Dog.prototype

Prototype-based Inheritance

27 October 2025

®,

NN

#r
)

Animal.prototype

_ _proto__ ®
numOflLegs 4
constructor ®

h J

__proto__ [
eat() function {...}
constructor

Dog /

prototype

'

Animal
/)

prototype

I

Towards a Formal Model of JavaScript Prototype Pollution

snowy.age

snowy .numOfLegs
snowy.eat ()
snowy.toString()
snowy .prop

Object.prototype
__proto__ null
toString|() function{...}

constructor '

!

Object /

prototype

'

brutalicious : Dog

__proto__

age

:;‘\\

27 October 2025

Prototype pollution (PP)

Object.prototype

brutalicious._ proto__ .numOfLegs = 3
Dog.prototype

__proto__ ® — Animal.prototype

numOfLegs 3 __proto__ ®
constructor * eat() function{...}

constructor '

A J
Dog / Animal /
prototype "4 prototype N

Towards a Formal Model of JavaScript Prototype Pollution

__proto__ null
toString() function{...}
constructor '
Object /
prototype .’,

Prototype pollution (cont.)

* A vulnerability where an attacker can modify an object’s prototype
at runtime

— May then be inherited by user-defined objects

— May then result in unintended behavior

SREE N T
o N

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Prototype pollution (cont.)

{ " proto ": { "isAdmin": true } }

1 Object.prototype
function checkAdmin(user : :
if (user‘.iSAdmin)({) A obj : Object _.pl’otcT_ null
console.log("Welcome, admin user!!"); proto isAdmin true
} else { — —
console.log("Just a regular user...");
}
} User.prototype
let user = new User("non-admin"); user : User __proto__
let obj = JSON.parse(input); __Proto__
checkAdmin(user); name “non-admin” Poor
server! @

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

PP-vulnerable program

A
—& Attacker’s input
1 P

a: Object
/ \ __proto___
Obiject.prototype
[PP vulnerability __proto__ null
b: Object prop “pwned!”
toStri 0
\ / proto__ oString()

PP-vulnerable
program

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Gadget

* PP’s impact depends on the existence of gadgets

— An otherwise benign piece of code which inadvertently read from
polluted properties to execute security-sensitive operations

* Triggering unintended behavior

* Examples: privilege elevation, reading secrets, RCE, DoS, log pollution

JF 4
{L{i/{ N o
} chase }I:-?"'
l/{&g chase() (NN 7 ":%%0 .

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Gadget (cont.)

Prototype-polluted

program
/ a: Object
roto
PP gadget - prop =
Object.prototype
“PWNEA!” e
__proto___ null
b: Object prop “pwned!”
[PP gadget — toString() oroto toString() return 0;

Error! f /

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

A
=& Attacker’s input
1 P

PP-insecure
program

End-to-end PP

-~

\ a: Object

[PP vulnerability - prop

__proto

Obiject.prototype

b: Object

PP gadget - prop

__proto___ null

prop “pwned

’»
!

__proto___

o

pwned!

Property to pollute depends on the gadget

27 October 2025

Towards a Formal Model of JavaScript Prototype Pollution

10/25

Example |

var inProto = " proto_ " .

i T Malicious
var 1nProp = "prop nout
var inVal = "polluted” P

var obj = {} } PP
var p = obj[inProto] vulnerability : ,
p[inProp] = inVal obj: Object

console.log({}.prop) } Gadget __proto__

Object.prototype

__proto___ null

prop “polluted”

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Who says JavaScript is hard to learn?! ©

fn.prototype : Object

—
constructor L]

fn : Function <=

CONStructor =0

arrow function:

— __proto__ ’
‘/— __proto__ \
< prototype .)(
not far unctions;

Function : Function :

constructor o
—Pproto__ .- == Function.prototype : Object
prototype o L ———
A /— constructor ;
/ _proto__
Object : Functigh . .
Object.prototype : Object
constructor L J A
__proto__ null
" proto_ o ﬁ = ’
constructor
prototype /\ _/
{}: Obj //
constructor » / . .
oo | & Various ways to access object prototypes

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution 12/25

var
var
var
var

var
var
var

inConstr = "constructor'
inProto = "prototype"
inProp = "prop"

invVal = "polluted"

obj = {}
c = obj[inConstr]
p = c[inProto]

p[inProp] = inVal

console.log({}.prop) //"polluted"

27 October 2025

Example 2

Malicious
input

PP
vulnerability

} Gadget

Towards a Formal Model of JavaScript Prototype Pollution

obj: Object

constructor

Obiject: Function

prototype

Object.prototype

__proto___ null

prop “polluted”

Example 3

function merge(dst, src) { |
for (let key in src) { PPI i {}: Object
if (!src.hasOwnProperty(key)) continue; = vuinerability
if (typeof dst[key] === 'object') { __proto___
merge(dst[key], srcl[key]);
} else {
dst[key] = src[key];
Obiject.prototype
__proto___ null
Malicious prop “polluted”

var input = '{"_proto_": {"prop": "polluted"}}' ' Ut
. iINnpu
merge({}, JSON.parse(input)); —1 PPPvulnerabiIity

console.log({}.prop); //"polluted" -» Gadget

Towards a Formal Model of JavaScript Prototype Pollution

27 October 2025

Example 4

var inProto = " proto_ "
var inProp = "prop"
var inVal = "polluted"
obj2: Object

var obj = {}. obj: Object “hanicn’
var p = obj[inProto] prop benign
p[inProp] = inval _ proto__ __proto__
var obj2 = {}
obj2.prop = "benign”
console.log(obj2.prop) //"benign" Object.prototype

?QJ __proto___ null

Observable behavior? = . ;
- prop polluted

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Example 5

var inProto = " proto
var inProp = "prop"
var inVar = true |

obj2: Object ‘

var obj, obj2 = {}
if (inVar)
obj[inProto][inProp] = "polluted"

obj: Object

__proto___
else

obj2.prop = "polluted”

console.log(obj2.prop) //"polluted”
Obiject.prototype

__proto___ null

prop “polluted”

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

From PP to unintended behavior

* The literature focuses on detection rather than defining PP and
gadgets formally
— Any untrusted access to ___proto___is forbidden (shallow definition)

— Any modification to an object property that is reachable from a prototype
object is forbidden (deep definition)

* Gadgets
— ACE, SSREF, privilege escalation, DoS, log pollution, cryptographic downgrade, ...

What are the formal definitions of PP-secure and gadget-free programs!?

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Shallow definition

The gray cells are expected to remain same for any untrusted input

obj: Object obj2: Object

__proto___ \}to_—]/

Object.prototype

obj3: Object
__proto___ null

propl| value __proto___

prop2 / prop value

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Deep definition

The gray cells are expected to remain same for any untrusted input

obj: Object obj2: Object

__proto___ \}to_—]/

Object.prototype

obj3: Object
__proto___ null

propl| value __proto___

prop2 '/ prop value

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Model language

A subset of the non-strict semantics of ECMA-262 standard

vi=s | n| b| undefined | null
x| e®ele(e)llele] | newe(e)|| function(x) c

il el

C = skip |i=e|| if (e) celsec| while(e) c| c;c| return e ||outr(e)

ﬁb
‘:‘.

H

Towards a Formal Model of JavaScript Prototype Pollution

27 October 2025

PP security

PP—secure(c) VEl, E,, H;, H,.

(E1, Hy) =1 (Ez, H)| A

I'e {(c,Ei, H,®)— (E3, Hs, 71) A
Ik (c, E, Hy, @)— (E4, Hy, 72)

— /ShallowD
__proto y
—> | T i To. \ eep

27 October 2025

PP-Gadget freedom

d
PP-Gadget-Free(c) < VE,, E;, Hy, Hy, H', H.
I'E <Ca El: Hla ®> _>T)<E;3 H{: Tl) A
[k (¢, Ey, Hy, @) —", (E}, Hj, 72) A

Uwﬁv’

—

[E <C, El,

HP @ H;

['E <C, Ez,

HY @ H,

@> —" <E;’, H{’, T3> A

UH

@) _>$mf <E;’, Hé”, 7.-4> /\

44

117
U NﬁU l

Towards a Formal Model of JavaScript Prototype Pollution

End-to-end PP

d
EZE-secure(c) éf VEla EZa Hl, Hz.
(E1, Hi) =1 (Ez, Hp)|A W
Hl 2K’NP H2 A\ —

I'E(c, Ey, Hi, @) —,(Es, Hz, 71) A T = T
r E (C, Ez, Hz, @) _>:;f <E4, H4, T2> 7= <17

P
— [o 5o v [r

7ol

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Ongoing work

* Sound enforcement mechanisms

— Runtime monitoring
* Non-root pollution
* Degree of exploitability and attacker’s knowledge
* Modeling mitigations

— Object.freeze(), Object.seal()

— Use of new Set(), new Map()

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

Takeaways

Formal modeling of prototype-pollution security

Y
‘L;J‘ Attacker’s input

l HO LO

[S e 2

PP vulnerability] Object.prototype NP SP
PP-insecure
__proto___ null
program L L
b: Object pwned!

/| prop

[PP gadget __proto___ 4
_ [TI Ul

b pwned!

27 October 2025 Towards a Formal Model of JavaScript Prototype Pollution

	intro
	Slide 1: It Wasn’t Me, It Was the Prototype! Towards a Formal Model of JavaScript Prototype Pollution
	Slide 2: JavaScript objects
	Slide 3: Prototype-based Inheritance
	Slide 4: Prototype pollution (PP)
	Slide 5: Prototype pollution (cont.)
	Slide 6: Prototype pollution (cont.)
	Slide 7: PP-vulnerable program
	Slide 8: Gadget
	Slide 9: Gadget (cont.)
	Slide 10: End-to-end PP
	Slide 11: Example 1
	Slide 12: Who says JavaScript is hard to learn?! 
	Slide 13: Example 2
	Slide 14: Example 3
	Slide 15: Example 4
	Slide 16: Example 5
	Slide 17: From PP to unintended behavior
	Slide 18: Shallow definition
	Slide 19: Deep definition
	Slide 20: Model language
	Slide 21: PP security
	Slide 22: PP-Gadget freedom
	Slide 23: End-to-end PP
	Slide 24: Ongoing work
	Slide 25: Takeaways

	backup
	Slide 26
	Slide 27: Backup slides
	Slide 28: Inheritance
	Slide 29: Example 6
	Slide 30: Example 7
	Slide 31: Example 5
	Slide 32: Example 8
	Slide 33: Example 9
	Slide 34: Example 10
	Slide 35: Example 11

