
It Wasn’t Me, It Was the Prototype!
Towards a Formal Model of JavaScript Prototype Pollution

October 27, 2025

Mohammad M. Ahmadpanah, David Sands, and Musard Balliu

ShiftLeft Workshop, Gothenburg

Chalmers KTH

Towards a Formal Model of JavaScript Prototype Pollution 2/2527 October 2025

JavaScript objects

• Mutable collection of properties

– Values evaluated at runtime

• Prototype: object blueprint

– Reusing existing objects

– An object with a set of properties

and functions shared between

all objects of the same type

– Exposed as regular programming construct
luxury["__proto__"], classic.__proto__, Car.prototype

Car.prototype

properties

methods

classic = new Car()luxury = new Car()

classic.__proto__luxury.__proto__

Towards a Formal Model of JavaScript Prototype Pollution 3/2527 October 2025

Prototype-based Inheritance

snowy.age
snowy.numOfLegs
snowy.eat()
snowy.toString()
snowy.prop

Towards a Formal Model of JavaScript Prototype Pollution 4/2527 October 2025

Prototype pollution (PP)

100

brutalicious : Dog

3
Poor

snowy! 

brutalicious.__proto__.numOfLegs = 3

Towards a Formal Model of JavaScript Prototype Pollution 5/2527 October 2025

Prototype pollution (cont.)

• A vulnerability where an attacker can modify an object’s prototype

at runtime

– May then be inherited by user-defined objects

– May then result in unintended behavior

Towards a Formal Model of JavaScript Prototype Pollution 6/2527 October 2025

Prototype pollution (cont.)

function checkAdmin(user) {
 if (user.isAdmin) {
 console.log("Welcome, admin user!!");
 } else {
 console.log("Just a regular user...");
 }
}
...
let user = new User("non-admin");
...
let obj = JSON.parse(input);
checkAdmin(user);

{ "__proto__": { "isAdmin": true } }

Object.prototype

__proto__ nullobj : Object

__proto__
isAdmin true

user : User

__proto__

User.prototype

__proto__

name “non-admin” Poor

server! 

Towards a Formal Model of JavaScript Prototype Pollution 7/2527 October 2025

PP-vulnerable program

PP vulnerability

Attacker’s input

Object.prototype

__proto__ null

a: Object

__proto__

prop “pwned!”b: Object

__proto__
toString() 0

PP-vulnerable

program

Towards a Formal Model of JavaScript Prototype Pollution 8/2527 October 2025

Gadget

• PP’s impact depends on the existence of gadgets

– An otherwise benign piece of code which inadvertently read from

polluted properties to execute security-sensitive operations

• Triggering unintended behavior

• Examples: privilege elevation, reading secrets, RCE, DoS, log pollution

.chase()

Towards a Formal Model of JavaScript Prototype Pollution 9/2527 October 2025

Gadget (cont.)

Prototype-polluted

program

Object.prototype

__proto__ null

a: Object

__proto__

prop “pwned!”b: Object

__proto__

PP gadget - prop

“pwned!”

PP gadget – toString() toString() return 0;

Error!

Towards a Formal Model of JavaScript Prototype Pollution 10/2527 October 2025

End-to-end PP

PP vulnerability - prop

Attacker’s input

PP-insecure

program

Object.prototype

__proto__ null

a: Object

__proto__

prop “pwned!”b: Object

__proto__PP gadget - prop

pwned! Property to pollute depends on the gadget

Towards a Formal Model of JavaScript Prototype Pollution 11/2527 October 2025

Example 1

PP

vulnerability

Gadget

var inProto = "__proto__"
var inProp = "prop"
var inVal = "polluted"

var obj = {}
var p = obj[inProto]
p[inProp] = inVal

console.log({}.prop) //"polluted"

Malicious

input

Object.prototype

__proto__ null

obj: Object

__proto__

prop “polluted”

Towards a Formal Model of JavaScript Prototype Pollution 12/2527 October 2025

Who says JavaScript is hard to learn?! ☺

Various ways to access object prototypes

Towards a Formal Model of JavaScript Prototype Pollution 13/2527 October 2025

Example 2

var inConstr = "constructor"
var inProto = "prototype"
var inProp = "prop"
var inVal = "polluted"

var obj = {}
var c = obj[inConstr]
var p = c[inProto]
p[inProp] = inVal

console.log({}.prop) //"polluted"

Object.prototype

__proto__ null

Object: Function

prototype

prop “polluted”

obj: Object

constructor

PP

vulnerability

Gadget

Malicious

input

Towards a Formal Model of JavaScript Prototype Pollution 14/2527 October 2025

Example 3

function merge(dst, src) {
 for (let key in src) {
 if (!src.hasOwnProperty(key)) continue;
 if (typeof dst[key] === 'object') {
 merge(dst[key], src[key]);
 } else {
 dst[key] = src[key];
 }
 }
}

var input = '{"__proto__": {"prop": "polluted"}}'
merge({}, JSON.parse(input));

console.log({}.prop); //"polluted"

PP

vulnerability

Malicious

input
PP vulnerability

Gadget

Object.prototype

__proto__ null

{}: Object

__proto__

prop “polluted”

Towards a Formal Model of JavaScript Prototype Pollution 15/2527 October 2025

Example 4

var inProto = "__proto__"
var inProp = "prop"
var inVal = "polluted"

var obj = {}
var p = obj[inProto]
p[inProp] = inVal

var obj2 = {}
obj2.prop = "benign"

console.log(obj2.prop) //"benign"

__proto__

obj2: Object

__proto__

prop “benign”

Object.prototype

__proto__ null

__proto__

prop “polluted”

obj: Object

__proto__

Observable behavior?

Towards a Formal Model of JavaScript Prototype Pollution 16/2527 October 2025

Example 5

var inProto = "__proto__"
var inProp = "prop"
var inVar = true

var obj, obj2 = {}
if (inVar)
 obj[inProto][inProp] = "polluted"
else
 obj2.prop = "polluted"

console.log(obj2.prop) //"polluted"
Object.prototype

__proto__ null

obj2: Object

__proto__

prop “polluted”

Observable behavior?
prop “polluted”

obj: Object

__proto__

Towards a Formal Model of JavaScript Prototype Pollution 17/2527 October 2025

From PP to unintended behavior

• The literature focuses on detection rather than defining PP and

gadgets formally

– Any untrusted access to __proto__ is forbidden (shallow definition)

– Any modification to an object property that is reachable from a prototype

object is forbidden (deep definition)

• Gadgets

– ACE, SSRF, privilege escalation, DoS, log pollution, cryptographic downgrade, …

What are the formal definitions of PP-secure and gadget-free programs?

Towards a Formal Model of JavaScript Prototype Pollution 18/2527 October 2025

Shallow definition

The gray cells are expected to remain same for any untrusted input

Object.prototype

__proto__ null

obj2: Object

__proto__

obj: Object

__proto__

prop1 value

prop2

obj3: Object

__proto__

prop value

Towards a Formal Model of JavaScript Prototype Pollution 19/2527 October 2025

Deep definition

Object.prototype

__proto__ null

obj2: Object

__proto__

obj: Object

__proto__

prop1 value

prop2

obj3: Object

__proto__

prop value

The gray cells are expected to remain same for any untrusted input

Towards a Formal Model of JavaScript Prototype Pollution 20/2527 October 2025

Model language

A subset of the non-strict semantics of ECMA-262 standard

Towards a Formal Model of JavaScript Prototype Pollution 21/2527 October 2025

PP security

Shallow vs.

deep

Towards a Formal Model of JavaScript Prototype Pollution 22/2527 October 2025

PP-Gadget freedom

Towards a Formal Model of JavaScript Prototype Pollution 23/2527 October 2025

End-to-end PP

Towards a Formal Model of JavaScript Prototype Pollution 24/2527 October 2025

Ongoing work

• Sound enforcement mechanisms

– Runtime monitoring

• Non-root pollution

• Degree of exploitability and attacker’s knowledge

• Modeling mitigations

– Object.freeze(), Object.seal()

– Use of new Set(), new Map()

Towards a Formal Model of JavaScript Prototype Pollution 25/2527 October 2025

Takeaways

Formal modeling of prototype-pollution security

	intro
	Slide 1: It Wasn’t Me, It Was the Prototype! Towards a Formal Model of JavaScript Prototype Pollution
	Slide 2: JavaScript objects
	Slide 3: Prototype-based Inheritance
	Slide 4: Prototype pollution (PP)
	Slide 5: Prototype pollution (cont.)
	Slide 6: Prototype pollution (cont.)
	Slide 7: PP-vulnerable program
	Slide 8: Gadget
	Slide 9: Gadget (cont.)
	Slide 10: End-to-end PP
	Slide 11: Example 1
	Slide 12: Who says JavaScript is hard to learn?! 
	Slide 13: Example 2
	Slide 14: Example 3
	Slide 15: Example 4
	Slide 16: Example 5
	Slide 17: From PP to unintended behavior
	Slide 18: Shallow definition
	Slide 19: Deep definition
	Slide 20: Model language
	Slide 21: PP security
	Slide 22: PP-Gadget freedom
	Slide 23: End-to-end PP
	Slide 24: Ongoing work
	Slide 25: Takeaways

	backup
	Slide 26
	Slide 27: Backup slides
	Slide 28: Inheritance
	Slide 29: Example 6
	Slide 30: Example 7
	Slide 31: Example 5
	Slide 32: Example 8
	Slide 33: Example 9
	Slide 34: Example 10
	Slide 35: Example 11

