Fixing the Dripping TAP:

Security and Privacy in Trigger-Action Platforms

Mohammad M. Ahmadpanah

CHALMERS

RSITY OF TECHNOLOGY

February 27,2024
ETH Zurich

whoami

201 1-15 2015-17 2017-19 2019-24

BSc MSc PhD (!) PhD
Software Info Sec Software Info Sec

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Trigger-Action Platform (TAP)

* Connecting otherwise unconnected services and devices

* Trigger event comes, app performs an Action
¥*
zapier

@ When this happens
Step 1: New Media Posted in My Account

Track your
> S nightly sleep in
Google
Calendar

@5 injectv (=] Recent Quakes H ;‘

i3 Fitbit

S 10.3k

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Trigger-Action Platform (cont.)

 Person-in-the-middle

* End-user programming

— Users can create and publish apps

Do | trust the
apps/TAP!?

Maintainers

— Most apps by third parties . knolleary

» dceejay

* Popular JavaScript-driven TAPs

¢
- and zapier (proprietar
p (P P Y) >25M users

- >|B apps per month
= (open-source) >800 partner services

~ Node-RED

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Fixing the Dripping TAP

* Securing TAPs in the presence of third-party apps

SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Mohammad M. Ahmadpanah, Daniel Hedin, Musard Balliu, Eric Olsson, Andrei Sabelfeld
USENIX'21

* Data privacy of TAP users

LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Mohammad M. Ahmadpanah, Daniel Hedin, Andrei Sabelfeld
S&P’'23

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

TAP architecture -
Zapier and Node-RED: Threat model: ‘Laﬂ

single-tenant / nodo R Malicious app maker

)=
’- F[Action]E

[Trigger }
[Trigger }

F[Action]

[Trigger } h >[App }

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

TAP architecture (cont.) -

IFTTT:
multi-tenant

[Trigger }

Threat model: ‘E‘\

Malicious app maker

[Trigger }

)=

[Trigger }

February 2024

F[Action]E

o m—_—_———__—_—_——_—_—_—,—— ~
1§ A \
! App]]
I I
I I
. o] .
\ {) !
N o o o o e e e e e o -

____________ N
(§ T
i ’[App] |
|]

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

P[Action]

Sandboxing apps in IFTTT and Zapier

* JavaScript of the app runs inside AWS Lambda

* Node.js instances run in Amazon’s version of Linux ‘Il n

* AWS Lambda’s built-in sandbox at process level

* I[FTTT: “App code is run in an isolated environment” | AWS
ambda

function runScriptCode(appCode, config) {
.. // set trigger and action parameters

eval(appCode) } n \' d e
@®

— Security checks on script code of the app

* TypeScript syntactic typing
e Disallow eval, modules, sensitive APIs, and I/O

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

* Using prototype chain in JS

February 2024

Sandbox breakout

function stack() {
try { stack(); }

new Er

catch {

r().stack; stack(); }

e.constructor.constructor('return process')().mainModule
.require('child process').execSync('echo pwned!'); }

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

IFTTT sandbox breakout

r
Trigger] : App Action E
|

[’m‘] | [-m‘]
Trigger i Action
iSpy Agent J \ SMS

B e | =

User installs benign apps from the app store
Compromised: Trigger and action data of the benign apps of the other users

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Zapier sandbox breakout

Malicious app maker

AR
% ﬁ
/ zapier \/]
/@; ____________ \\
['mj ¢
Trigger) ’[App Action m
l Trigger J ﬂl Action IE

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Node-RED breakout

Malicious app maker

T e
4) _— (=
l Trigger | EI@ >[App Zf/? »l Action IE
!

[_mT |
Trigger App : al Action l
J J SMs

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user and the TAP itself

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

How to secure JavaScript apps on TAPs?

Approach: access control by secure sandboxing

* IFTTT apps should not access modules, while Zapier and Node-RED apps may
* Malicious Node-RED apps may abuse child _process to run arbitrary code, or

may tamper with shared objects in the context

Need access control at module- and context-level

 IFTTT apps should not access APIs other than
— Trigger and Action APIs, Meta.currentUserTime and Meta.trigger Time

* |IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need fine-grained access control at the level of APIs and their values

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

e Soundness

SandTrap: modeling

- Monitoring at node level enforces global security

* Transparency

February 2024

- No behavior modification other than raising security error

- The monitor preserves the longest secure prefix of a given trace

. S

node b

node ¢

>- SandTrap

node a node a 4 N node a
> > >
node b . SandTrap
node ¢ N node b . node b X
__ J

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

SandTrap: implementation

* Enforcing
— read, write, call, construct policies

* Secure usage of modules Host (" SendTrap)

— vs.isolated-vmand :
Secure ECMAScript X "Hello" :Hello” | x € | x

* Structural proxy-based

rw

— VvSs.vm2 y:"World" |y <—-—> y y : "World"

— two-sided membranes i \ %

rnw

— symmetric proxies
* Allowlisting policies at four levels
— module, API, value, context

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Baseline vs. advanced policies

* To aid developers, need

— Baseline policies once and for all apps per platform
* Set by platform
* “No module can be required in IFTTT filter code”

— Advanced policies for specific apps
* Set by platform but developers/users may suggest

* “Only use allowlisted URLs or email addresses”

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

SandTrap benchmarking examples

Platform Use case Policy granularity Example of prevented attacks
Baseline Module/API Prototype poisoning
Tweet a photo from an Instagram post Value Leak/tamper with photo URL
5 Baseline Module/API Prototype poisoning
Zapier
Create a watermarked image Value Exfiltrate the photo

Baseline Module/AP] Attacks on the RED o.bject,.
- Run arbitrary code with child_process
"

Tamper with the tanks and pumps (in global
context)

Node-RED

Water utility control Context

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

SandTrap monitor

Malicious app maker

&

TAP
— Structural proxy-based C _______ ,\
monitor to enforce fine- II@) \
: . : 2 | .

grained policies for JavaScript | Trigger : | App : E
(o) ' g |

—_ Formal fl"ameWOFk (for a core Trigger : APP]
language) S = = 4
° /S - - ===-= -
Soundness and transparency ‘3 @ :

l Trigger = App F i

Locatio I Nest Thermostat,
&_ - - _j

“Z,_.FEI
,,..2’

E:lik 1'"'_".._ Try at https://github.com/sandtrap-monitor/sandtrap

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

TAPs with queries

* Additional data source with Queries
— Recently introduced in IFTTT, allowing for complex apps

— Accessing private data e.g., calendar events, watched movies, and locations

8:00am of a workday
If % with Ery, then A.tu

Gl r

The first meeting Post the meeting’s
in office title to channel

®
on

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Push-all approach in TAPs

Trigger
S5 “Every morning, post
* the title of the first office
DayOfVVeek . .
Time meeting to Slack
TAP
Q uery "today"
31 < I if (events[0].Where == "office")
[> Slack.post(events[0]. Title)
events[].Title
-Where
Starts Push-all approach
Ends .. All trigger/query data to TAP
.Description .. ind d £th d
EventURL independent of the app code
Action at odds with data minimization

February 2024

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

‘ SmartThings

February 2024

Movie recommender

The movie title is picked
randomly among user’s
recommended movies

[-

Notifications.setMessage(

let index = Math.floor((Math.random() [¥ Trakt.recommendedMovies.length))

—

"Let’s watch: " + Tral<t.recommendedMovies

index].MovieTitle)

recommendedMovies[].Movield
MovieTitle
.MovieYear
.MovieDescription

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Data minimization

* “Only necessary data should be collected for the specific purpose
the user consented”

* [FTTT’s approach: Attribute-level overprivilege
— Push-all approach

— Input services should send (by default) the 50 most recent events

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

min TAP [USENIX'22]

* Minimization wrt ill-intended TAP

llllllllllllllllllllll

* Preprocessing approach ; Trigger ¢
— Minimizing attributes of trigger data \Minimizer)

* Modes: Static and Dynamic o @ e
— Static: All attributes in the app code [App code J E
— Dynamic: Pre-runs the app code on the service

. Trusted clients required 7 ﬂ:{>Act.on

— For minimization analysis and app integrity

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Lazy TAP: data minimization by design

* Minimization wrt willing-to-minimize TAP

llllllllllllllllllllll

» On-demand approach ETF‘%;EUGWJ?
— Pulling attributes of trigger and query data
— Data source unification o ﬁ@;g
* Input-sensitive and fine-grained [APP code}

— TAP: Lazy runtime supporting fetch-on-access : ;
— Trigger/Query services: Shim layers ‘ "" > ;A: ;tion

* Caching mechanism

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Lazy TAP: running example

e —————— —
DayOfWeek
. u . U')
Trigger : Time ; z
e rerreena e —————— __/

Q ue ry token
R L L LRI \
; "today" TAP

31 <: if {events[0].Where|== "office’)
|:> ‘::> Slack.post(Events[0] Title);

: events[].Title = token

: Where 3 [0].Where
Starts [0].Title j
.Ends @ e
.Description .

e Action

February 2024

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Seamlessness for app developers

* App code remains as is
— Using the same APIs

— Supporting nondeterminism and query chains

* Lazy runtime for apps
— Remote proxied objects for trigger and queries
— Deferred query preparation and property access by thunking

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Modeling

* Core language: While language with objects

e=v|x|e@elf@ | elel | {} [T 0k | Am)
0=

* Modeling remote objects, lazy query, and deferred computation

L ﬂ

I S
. ~_ <
Theorem: Lazy TAP is correct : ~.
I S .
and at least as precise as | Strict
I ,/’
I /’

preprocessing minimization

v Lazy heap extends to a heap
isomorphic to strict heap

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Evaluation

Distinctive pattern Total attributes (IFTTT) Static minTAP LazyTAP
MeetNotif Sensitive independent query 2 + (6 * CalendarLength) 2 | |2
MovieRec Nondeterministic query, skip on time 3 + (7 *TraktLength) TraktLength + | I

4 + (6 * CalendarLength) +

ParkFind Conditional query chain, skip on queries (7 *YelpLength)

4 | | 3|4

Minimization: 95% over IFTTT; 38% over static minTAP

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

Lazy TAP in comparison

Approach Minimization wrt Minimization guarantees

IFTTT None Push all, no minimization guarantees
Static minTAP lll-intended TAP Input-unaware minimization
Dynamic minTAP ll-intended TAP Input-sensitive minimization

No attributes when skip/timeout + No support for queries

Input-sensitive minimization wrt trigger and query inputs

LazyTAP TAP willing to minimize (supporting nondeterminism and query chains)

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

llllllllllllllllllllll

Trlgger/Query

Lazy TAP takeaways sim)
On-demand minimization by design: S ﬁ@;ﬂy
- Input-sensitive and fine-grained '
- Supporting queries and nondeterminism [Appicoce J

- Seamless for app developers ‘
- Correctness and precision formally proved “ "" A
- Benchmarking:

95% over IFTTT, 38% over static minTAP

- Proxied remote objects
- Deferred computation by thunking

Lazy runtime by: ﬂ”%i*'%}:”'

https://www.cse.chalmers.se/research/group/security/lazytap

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

https://smahmadpanah.github.io

The Dripping TAP Fixed!

l Trigger =

Malicious app maker

&

l Trigger :

E

l Trigger :

——————— ~

/ \
I @ A @]
i PP ,
| @ I
: App :
. - /
s - T T T == -
I %) @ |
App i

(=)

Fine-grained access control enforcing isolation

February 2024

Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

llllllllllllllllllllll

L Shim J

On-demand data minimization

Current projects

* Privacy policy monitoring and enforcement in TAPs
— Dependency analysis: dead code elimination, input partitioning
— User-specified policies
* On-the-fly dynamic permission system
* Using temporal logics: MTL, LTL
* SoK for JS sandboxing

— Decision tree for server-side JS sandboxing

* Statically detecting malicious browser extensions

— Taint tracking CodeQL queries for attacks such as
stealing search queries, cryptowallet credentials, cookies

February 2024 Fixing the Dripping TAP: Security and Privacy in Trigger-Action Platforms

