A Roadmap for
Server-Side JavaScript Sandboxing

Daniel Hedin Mohammad M. Ahmadpanah Tamara Rezk Andrei Sabelfeld

Fers

KTH -
l‘ e o -
Chalmers Malardalen KTH Inria

Chalmers Security & Privacy Seminar
May 26, 2025

Sandboxing

* Securing untrusted code execution

* Server-side integration

— Third-party modules

~ \

— User code
Server
e Use cases
)

L

— User automation
% o2 4)
Zaplel’ /| make Node-RED [User Code |]
— Cloud-based code execution ApPp [o o 2]
v,

{2 cLoupiry fYnango OJITSU -

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing 2/32

Sandbox breakout

4 Host * What if sandboxing fails?
(T T D — Exposing sensitive data
User code | : :
M — Executing arbitrary code

* Code exec via host object

[function stack() { new Erfor().stack; stack(); })
& | try { stack(); } catch {
‘-l e.constructor.constructor('return process')().mainModule
.require('child process').execSync('echo pwned!"'); }
_ J

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

26 May 2025

IFTTT:architecture -
Threat model:

IFTTT: d Malicious app maker
multi-tenant / ﬂ\i@ g \
i m_—_—_-_-—_m—_——_—— ~
/ \
[Trigger } i@ >[App } 1 '[Action]E
! |
' |
[Trigger } : ’[App } ll '[Action]
N o o oo oo oo oo o o = - -

6 ——y
hgm Trigger] i ’[App J 1 '[Action]
t__________) >27M users

>|B apps per month
>900 partner services

A Roadmap for Server-Side JavaScript Sandboxing

IFTTT:sandboxing

* JavaScript of the app runs inside AWS Lambda

* Node.js instances run in Amazon’s version of Linux 5_\,
AWS Lambda’s built-in sandbox at process level

IFTTT: “App code is run in an isolated environment”

AWS Lambda

function runScriptCode(appCode, config) {
.. // set trigger and action parameters
eval(appCode) }

— Security checks on app code ﬂ ‘ d e

* TypeScript syntactic typing @
* Disallow eval, modules, sensitive APls, and I/O

* vmz2 isolation (received bounties; continuous interactions on fixing in 2020)

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

IFTTT: sandbox breakout

Notifications A
Send a notification from the IFTTT app

e Actionran, 10:57 AM

message

{"version"=>"v16.20.1", "versions"=>{'node"=>"16.20.1",
* Lucky IFeF3-Td.4.146.26-node. 26", "uv"=>"1.43.0", "zlib"=>"1.2.

"brotli"=>"1.0.9", "ares"=>"1.19.1", "modules"=>"93", "
— ECMASgriptmadules it AVS rgntgme-faaNadele Lot == [Tnterna t L Y
* No a€diRg tbithé trienpiiré uigiona L Binding errors", "NativeModuld Sig Ji 8 &
ternal/errors™, "Internal Binding config", "Internal Bigg @ f =&

e But... g timers", "Internal Binding async_wrap", "Internal Bin s

- Nacive €% ETes I0RE 87 NERSI e BRI

€rna

26 May 2025

A Roadmap for Server-Side JavaScript Sandboxing

IFTTT: sandbox breakout (cont.)

/%unction stack() {
try { stack(); }

new Error().stack;

catch (e) {

stack();

¥

let process

let spawn_sync

}
N

e.constructor.constructor('return process')();

= process.binding('spawn_sync');

IfNotifications.sendNotification.setMessage(spawn_sync.spawn(trigger.cmd))

)

Remote ¢

26 May 2025

e ietfidietshell acpess),

DLL injection (dynamically Ioadlng C++ modules)
— Writing to /tmp via process.binding('fs")

moatle) to load the iniected bmary module
sbx_user1051| | error:

— process.dlopep(
¢ {whoami ¥ output:
A Roadmap for Server-Side JavaScript Sandboxing

IFTTT: sandbox breakout (cont.)

::ix Trigger J ’I Action lm
l Trigger J 'I Action IE

[Trigger } ! '[Action]m

User installs benign apps from the app store
Compromised: Trigger and action data of the benign apps of the other users

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

IFTTT: sandboxing nhow

* AWS Lambda’s built-in sandbox at process level

* Security checks on script code of the app
— TypeScript syntactic typing
— Disallow eval, modules, sensitive APls, and |/O AWS Lambda

— Finally, isolated-vm (received bounties; continuous interactions on fixing in 2023)

Notifications A
Send a notification from the IFTTT app

e Actionran, 2:58 PM

@ message

CATCH process is not defined | ReferenceError: process is n
ot defined at eval (eval at <anonymous> 4<isolated—vm>l13:3
9), <anonymous>:3:1) at <isolated-vm>:13:68

26 May 2025

A Roadmap for Server-Side JavaScript Sandboxing

Cloud]S™ sandboxing

* Cloud-based |S code execution service
— Integrated into several well-known automation platforms

* Multi-tenant AWS Lambda
* Rich execution environment
— Including storage and networking capabilities

* No sandboxing mechanism! “
— Restricting access child_process by overriding global.require |\2]

— Multiple ways to access require remained
— vm2 isolation

— Breaking via the error stack technique

— Vulnerabilities confirmed with PoCs in 2025

* Powerful modules (e.g., axios, crypto) shared between users of different platforms
— Platform-level cross-user attacks
— Significantly challenging to adapt isolated-vm
— In contact on fixing with integrating our solution

* Name redacted for the ethical reasons

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing 10/32

vm?2: popular |S sandbox

* Sandboxing solution used in

* Cloud platforms * Al agent frameworks
* User automation apps * Development SDKs

* Over 585M npm downloads since 2014

* Popularity reasons
— Easy-to-use
— Support for require (CJS modules)
— Module mocking and API-level |S injection

\
| . o

— Language-based (affordable overhead)
— vm-based + proxy membranes

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

vm?2: deprecated |S sandbox

6 XmiliaH on|Jul 10, 2023 Collaborator Author

Xion (SeungHyun Lee) of KAIST Hacking Lab found the vulnerabilities
| am not able to fix without changing the whole sandboxing strategy

* Fatal flaws in vm2
— Language-level: Unmodeled reflected APIs
— Breaking language constructs: import, eval, and async

— Also in other vm-based solutions
* "vm is not a security mechanism. Do not use it to run untrusted code."
* SandTrap: fine-grained policies + allowing for complex host/sandbox interaction
* SandTrap's response: significantly locked down; some detrimental effects on use cases

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

vm?2: deprecated JS sandbox (cont.)

11 Project Discontinued !

TL;DR The library contains critical security issues and should not be
used for production! The maintenance of the project has been
discontinued]Consider migrating your code to isolated-vm.

* Suggested alternative: isolated-vm
— Pros: secure, using v8’s interface (runtime-based)

— Cons:
* No CJS/ES support

* Limited support for policies

* Sharing between isolates are risky/far from transparent

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

vm?2: deprecated yet popular (!) JS sandbox

—

Downloads per month
Click and drag in the plot to zoom in
30M
25M ¥ 2025-05-14 to 2025-05-20
e e —
// & N _; [(\ I|II 1 ’ 143 ’ 3 7 0
K ~ANAS f \ :
\\ 'I:I lk'\ .-"x*.\-,f"::
= —
1O ¥ 2025-05-15to 2025-05-21
sisolated-vm
2 263,673
put %’ﬁﬁ’iﬁ

m e
q EATE

T G S e
Maonth

—
¥ N A A S S

26 May 2025

A Roadmap for Server-Side JavaScript Sandboxing

Post-vm2 migration analysis

* Crawling the GitHub dependents pages
— Using github-dependents-info

— 183,149 unique repos collected —

* Dealing with GitHub false positives <
— All repositories cloned [;0 —
— git log to find actual use of vm2 vm2

— Careful regex patterns for require/import vm2

— 3,127 repos with actual use identified

— Excluding hits from less interesting packages (e.g., degenerator, yarn,and eslint)
— |,159 repos identified to have migrations away from vm?2

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Post-vm2 migration analysis (cont.)

* 70 repos analyzed (+5 stars)
— 19 high security needs in core features
— Only 8 with isolated-vm-based solutions: sometimes overly complex ad-hoc injections
— |5 known-as-insecure alternatives (eval, require, vm): no sandboxing needed!
— |0 dropped feature/discontinued
— Some with expensive workarounds: process-level isolation and standalone runtimes

* Use cases
— Pure isolation
— Isolation with access to Common|S
— Isolation with injection capabilities
— Isolation with more advanced policies (e.g., controlling fs)
— Some combination of the above and more

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Cloudify

* Cloud integration service

— A common API to other cloud/web services QJ CLOUDIFY
* User-defined widgets to extend the platform

/

* Security need: critical when multi-tenant
* Migration:
— From: NodeVM full require access +
injected interaction APIs

— To: isolated-vm, with complex workarounds
and feature loss

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

~

L ¥ 2

26 May 2025

Cloudify (cont.)

[NE-5433-6171]Replace vm2 package with isolated-vm for backendwidget #2587

Mer
jyoti-siddareddi merged 18

commits into master from NE-5433-6171-replace-vm2 |'_|;|0n Oct 27, 2023

® Vorbert-Kruk reviewed on Oct 17, 2023 View reviewed changes

A

Vorbert-Kruk left a comment

Overall, I'm not certain about

the amount of breaking changes|that we are introducing wit

it seems that we are breaking

more stuff that was initially planned

A Roadmap for Server-Side JavaScript Sandboxing

Nango

* APl integration platform @nango
— A unified API to interact with S %]
multiple external APls N =)
* User-contributed APIs and integrations TN o =
can be added to the project via pull requests —
* Security need: critical when multi-tenant L 7

. Migration:
— From: NodeVM with full require access + injected interaction APls
— To: first quickjs-emscripten (overhaul + major limits), then redesigned!

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Jitsu

* Event collection and processing, streaming to data warehouses
— For site analytics and data collection

e User-defined functions in its cloud environment

* Security need:isolation with CJS,
critical when multi-tenant e
* Migration:
— From: NodeVM with limited require & O
* Opt for vym2 due to ease of use AP

— To: handmade isolated-vm-based &

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

26 May 2025

Sandboxing alternatives

JS-Interpreter
quickjs-emscripten
SES (npm package)
isolated-vm

Non-alternatives:
— jailed, safe-eval, near-membrane: known breakouts
— NodeSentry, BreakApp, deno-vm: unavailable

— Worker thread, tiny worker: unrestricted access to env

A Roadmap for Server-Side JavaScript Sandboxing

Sandbox

Runtime-based

TreeHouse [32]
BreakApp [65]
jailed
deno-vm
isolated-vm

Language-based

vm2
realms—-shim
ses
safe-eval
notevil
SandTrap [14]
MIR [66]
near—-membrane
AdSafe

Caja

[SandDriller]

JS-interpreter

* Sandboxed JavaScript interpreter in JavaScript

— Line-by-line execution of ES5
* Setup phase: injecting functions and objects
* Execution phase: only primitive values

* No module support

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

quickjs-emscripten

* Interpreter-based sandbox supporting most of ES3
— A Wasm binding of the Quick]S interpreter

* Sharing only primitive values + injecting host functions
into the sandbox using a special API

— Unmodified host functions cannot be injected

* Deployable on the client side too

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

26 May 2025

SES

An implementation of Hardened /S
— A language subset to implement isolation via compartments
Locking down the shared execution environment

Shared values are hardened or frozen
— Preventing attempts to tampering with the global objects

Only SES-compatible source modules
Requiring strict mode

Forbidden: dynamic imports, direct calls to eval
Heavy impacts on the host

— No load of many modules after lockdown

A Roadmap for Server-Side JavaScript Sandboxing

isolated-vm

* Exposing lightweight V8’s Isolate API

— Same isolation mechanism used by Chromium to separate tabs, iframes, web
workers, and service workers

* Sharing only by references

* Transparent sharing only for
— Cloneable values: objects containing methods are not cloneable
— Functions receiving/returning only cloneable values
* Limitations
— No prototype chain traversing of shared objects
— Function references cannot be interacted with as regular objects

— Complex sharing is not supported
* The code of both the host and the sandbox must be changed (adapters)

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

isolated-vm (cont.)

SECURITY

Running untrusted code is an extraordinarily difficult problem which must be approached with great care. Use of
isolated-vm to run untrusted code|does not automatically make your application safe| Through carelessness or
misuse of the library it can be possible to leak sensitive data or grant undesired privileges to an isolate.

PROJECT STATUS

isolated-vm is currently in maintenance mode] New features are not actively

being added but existing features and new versions of nodejs are supported as
possible. There are some|major architectural changes which need to be added

to improve the stability and security of the project. | don't have as much spare

time as | did when | started this project, so there is not currently any plan for

these improvements.

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Lesson learned: suitability of sandboxes

* Functionality
— Method of sharing: by cloning or by reference
— Type of sharing: data only, with callables, full object sharing
— Module support: Common)S or ES modules

* Security
— Privilege escalation: reaching unintended functionality
— Cross-boundary poisoning: insecure modification of shared values

* Performance
— Setup + cross-boundary interactions + execution

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Fiberglass

Secure sharing of objects and modules

* A proxy-based sandbox on top of isolated-vm

— Robust isolation: no breakouts please!
— Supports full sharing and controlled injection of Common)S modules
— Secure, mediated bidirectional reference transfer between host and sandbox

* Against cross-boundary poisoning: modules are shared read-only

* Against breakouts: enforces controlled referencing
— Intrinsics are mapped to their local equivalent

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Fiberglass (cont.)

* One-sided barriers, isolate-to-isolate sharing
— Sending via isolated-vm references to pass values freely
— Receiving via proxies to represent the received value locally

— Unlike vm2 and SandTrap E
with mutually recursive proxies Host . sandbox

— Allows for one-sided policy enforcement

* Passing objects/functions using _E,r—]_".'—]ﬂ.

references to capabilities
— Precise control on interactions with : .
E D P(E) =«

sharing with other actors : —
* Module allow-listing <_L—‘<ﬁ—‘

Host barrier Sandbox barrier

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Suitability of Fiberglass

let fiberglass = require('fiberglass');

* InStantiated fOI" C|OUC|If)’ let sandbox = new fiberglass.FiberGlass(
. . {)
* |deal for the rich execution { modules : ['lodash', 'body/json’, ... 1}

environment in Cloud|S .

— With complex modules (axios, crypto,and jsonwebtoken)

* Affordable overhead on primitive operations
* Synthetic benchmarks for calls from/to sandbox and property read/write
— Subsumed by other factors in real-world scenarios (e.g., Cloudify)

Considerable manual effort
(isolated-vm)

Automatic way of sharing complex objects
between the host and isolated-vm
(Fiberglass)

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Decision tree

A systematic guide to

suitable sandboxing alternatives

SES ---------- bzBond
ES
CJS
Module) Fiberglass ---------- CloudJS, Cloudify, Nango
support
Untrusted
Fiberglass «=====x::- it
Unrestricted g Jitsu
None
Sandboxed Sharing
code
Cloneable . IFTTT,
Adaptable isolated-vm ==ssreeeee QuickChart,
AWS QnABot
Trusted
VM =eemeesaes Make VSCode SDK

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Takeaways

* Secure integration of untrusted code is still a serious challenge!

— Bounties from IFTTT (2020, 2023) and breakouts confirmed by Cloud|S (2025)
— A clear lack of go-to substitutes for the popular, deprecated vimm?2

* Trade-off between functionality, ease-of-use, and security

— Migration analysis: major efforts to find suitable alternatives,
sometimes sacrificing functionality, security, or both!

* Fiberglass
— Robust isolated-vm + supporting full sharing/CJS
— In contact with Cloud|S on integrating Fiberglass

* Decision tree for developers to navigate the wild

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Backup slides

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

QuickChart

* Generating chart images from a URL, might contain user code
* Security need: pure isolation, critical

* Migration:
— From: basic use of NodeVM %0 _—

45
40
35
30
— In the repo: none! 25
20
15
10

— Jo: isolated-vm

ol \Im?._%():%m N (3820 o ol

_alated co\ate co\ate
orcnart @,50\8 at <150 at <is0!
atd

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

Metlo

* Open-source API security tool

* Security need: isolation with advanced policies, critical when multi-
tenant

* Migration:

— From: NodeVM plus mocking

Login to Metlo

— To: Seems to be using VM without any protection!

26 May 2025 A Roadmap for Server-Side JavaScript Sandboxing

	intro
	Slide 1: A Roadmap for Server-Side JavaScript Sandboxing
	Slide 2: Sandboxing
	Slide 3: Sandbox breakout
	Slide 4: IFTTT: architecture
	Slide 5: IFTTT: sandboxing
	Slide 6: IFTTT: sandbox breakout
	Slide 7: IFTTT: sandbox breakout (cont.)
	Slide 8: IFTTT: sandbox breakout (cont.)
	Slide 9: IFTTT: sandboxing now
	Slide 10: CloudJS*: sandboxing
	Slide 11: vm2: popular JS sandbox
	Slide 12: vm2: deprecated JS sandbox
	Slide 13: vm2: deprecated JS sandbox (cont.)
	Slide 14: vm2: deprecated yet popular (!) JS sandbox
	Slide 15: Post-vm2 migration analysis
	Slide 16: Post-vm2 migration analysis (cont.)
	Slide 17: Cloudify
	Slide 18: Cloudify (cont.)
	Slide 19: Nango
	Slide 20: Jitsu
	Slide 21: Sandboxing alternatives
	Slide 22: JS-interpreter
	Slide 23: quickjs-emscripten
	Slide 24: SES
	Slide 25: isolated-vm
	Slide 26: isolated-vm (cont.)
	Slide 27: Lesson learned: suitability of sandboxes
	Slide 28: Fiberglass
	Slide 29: Fiberglass (cont.)
	Slide 30: Suitability of Fiberglass
	Slide 31: Decision tree
	Slide 32: Takeaways

	backup
	Slide 33
	Slide 34: Backup slides
	Slide 35: QuickChart
	Slide 36: Metlo

