SandTrap: Securing JavaScript-driven

Trigger-Action Platforms ISENIX
SECURTTY YMPOSIUM

{web:sec}

Mohammad M. Ahmadpanah”, Daniel Hedin™>', Musard Balliu*, Lars Eric Olsson", and Andrei Sabelfeld”

*Chalmers University of Technology
"Méilardalen University
*KTH Royal Institute of Technology

WALLENBERG Al
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

* “Managing users’ digital lives” by connecting

* Smart homes, smartphones, cars, fitness
armbands IFTTT

* Online services (Google, Dropbox,...)
* Social networks (Facebook, Twitter,...)

* End-user programming
* Users can create and publish apps

&
zapier
* Most apps by third parties

* JavaScript-driven
* IFTTT and Zapier (proprietary) o<

* Node-RED (open-source) Node-RED

Do more with the services you love

[Sandboxing apps in IFTTT and Zapier

* JavaScript of the app runs inside AWS Lambda

* Node.js instances run in Amazon’s version of Linux
* AWS Lambda’s built-in sandbox at process level | | n

e IFTTT: | function runScriptCode(scriptCode, config) {
.. // set trigger and action parameters

eval(scriptCode)
} AWS
Lambda

w@d 'S

* Security checks on script code of the app
* TypeScript typing

e Disallow eval, modules, sensitive APIs, and I/O

[IFTTT sandbox breakout
PWNED | PWNED |
::tx Trigger } Action m
PWNED PWNED
[Trigger } '[Action]
e =IER s S (s

H' A4
c . Maﬁous app maker 9 :
Date & Time TI"gger \ APP J / ACtIOﬂ

* User installs a benign app from the app store

* Compromised: Trigger and action data of the benign app

[Zapier sandbox breakout

Malicious app maker
AR

]

PWNED

{ Action

t PWNED
Action]

PWNED O
[Trigger

PWNED

[Trigger

SMS

\ g’ \ g’
—

%

|

——

>[App } { Action]

* User installs a malicious app that poses as benign in app store
* Compromised: Trigger and action data of other apps of the same user

9 [Trigger

Location

hd

[Node-RED sandbox breakout

Malicious app maker

AR

‘o

PWNED PWNED
::i : [Trigger Action m
PWNED PWNED

Action]
SMS

* User installs a malicious app that poses as benign in app store
* Compromised: Trigger and action data of other apps of the same user and the TAP itself

Paper appeared in
USENIX Security 202 |

[IFTTT breakout explained]

declare var require : any;

* Prototype poisoning of |var red
. . var pay ga try { S . . e
Papld . pr\ototype . neXtInVOcat 10N let rapid = reqllllre.(/var/runﬁlme/RAPIDCllent.js) ;

// prototype poisoning of rapid.prototype.

in AWS Lambda runtime L aoyrmosaien

var £ = (() => {}) .constructor.call (null,’require’,

* Store trigger incoming data 'Dropbox’, ’Meta’, payload);

var result = f(require, Dropbox, Meta);
Email.sendMeEmail.setBody (result) ;

* Evade security checks
* Enable require via type declaration

* Enable dynamic code evaluation

* Manipulate function constructor
e Pass require as parameter

* [FTTT’s response
* vm2 isolation “&
* Yet lacking fine-grained policies

* Use network capabilities of the app via
Email.sendMeEmail.setBody()

[How to secure JavaScript apps on TAPs!?]

Approach: access control by secure sandboxing

* [FTTT apps should not access modules, while Zapier and Node-RED apps have to
* Malicious Node-RED apps may abuse child process to run arbitrary code

Need access control at module- and context-level

* [FTTT apps should not access APIs other than

* Trigger and Action APIs,Meta. currentUserTime and Meta.triggerTime

* [FTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need fine-grained access control at the level of APIs and their values

SandTrap monitor

¢ Enforcing Host / SandTrap \

* read, write, call, construct policies ;

x : "Hello" x:"Hello" | x (—-—) X

* Secure usage of modules '

e vs.1solated-vm and , "

o : "World" ; : "World"
Secure ECMAScript : Y y

* Structural proxy-based o N /

* vs.vm2 * Baseline policies once and for all apps per platform

* Allowlisting policies at four levels * Set by platform

 module, AP, value, context * Advanced policies for specific apps
* Set by platform but developers may suggest

POhCY generation * ”Only use allowlisted URLs or emails”

 Execution mode

[Policies and benchmarks]

Platform Use case Policy Attacks prevented

Baseline policies Granularity
Baseline Module/API

Prototype poisoning

* No modules, no APIs other
m than Tr'igger/Action m Back up new iOS photos in Value

Dropbox
* Read-only moment API

Leak photo URL

Baseline Module/API Prototype poisoning

3
Zapler Create a watermarked image Value Exfiltrate the photo

using Cloudinary

zapier « Read-only protection of
Zapier runtime

Baseline Module/API Run arbitrary code
B ° No modules, allowlisted _ with child_process
e calls on RED object No Water utility control Context Tamper with the tanks

and pumps

Malicious app maker

* [FTTT, Zapier,and Node-RED
vulnerable to attacks by malicious apps

 Breakouts
* Coordinated disclosure

* Empirical studies .

* SandTrap monitor
* Policies 0
e Baseline & advanced
* Module-,API-, value-, and context-levels

* Benchmarking on IFTTT, Zapier, and Node-RED &3 -'ﬁ..il

RF o

. TI’)’ at https://github.com/sandtrap-monitor/sandtrap F?.r';,f

Gfiactizs

