

SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Mohammad M. Ahmadpanah*, Daniel Hedin*,†, Musard Balliu‡, Lars Eric Olsson*, and Andrei Sabelfeld*

*Chalmers University of Technology [†]Mälardalen University [‡]KTH Royal Institute of Technology

Trigger-Action Platforms (TAPs)

- "Managing users' digital lives" by connecting
 - Smart homes, smartphones, cars, fitness armbands
 - Online services (Google, Dropbox,...)
 - Social networks (Facebook, Twitter,...)
- End-user programming
 - Users can create and publish apps
 - Most apps by third parties
- JavaScript-driven
 - IFTTT and Zapier (proprietary)
 - Node-RED (open-source)

Sandboxing apps in IFTTT and Zapier

- JavaScript of the app runs inside AWS Lambda
- Node.js instances run in Amazon's version of Linux
- AWS Lambda's built-in sandbox at process level
- IFTTT: function runScriptCode(scriptCode, config) { ... // set trigger and action parameters eval(scriptCode)

- Security checks on script code of the app
- TypeScript typing
- Disallow eval, modules, sensitive APIs, and I/O

IFTTT sandbox breakout

- User installs a benign app from the app store
- Compromised: Trigger and action data of the benign app

Zapier sandbox breakout

- User installs a malicious app that poses as benign in app store
- Compromised: Trigger and action data of other apps of the same user

Node-RED sandbox breakout

- User installs a malicious app that poses as benign in app store
- Compromised: Trigger and action data of other apps of the same user and the TAP itself

IFTTT breakout explained

- Prototype poisoning of rapid.prototype.nextInvocation in AWS Lambda runtime
 - Store trigger incoming data
- Evade security checks
 - Enable require via type declaration
 - Enable dynamic code evaluation
 - Manipulate function constructor
 - Pass require as parameter
- Use network capabilities of the app via Email.sendMeEmail.setBody()
- declare var require : any; var payload = 'try { ... let rapid = require("/var/runtime/RAPIDClient.js"); // prototype poisoning of rapid.prototype. var f = (() => {}).constructor.call(null,'require', 'Dropbox', 'Meta', payload); var result = f(require, Dropbox, Meta);
- IFTTT's response
 - vm2 isolation 🝁

Email.sendMeEmail.setBody(result);

Yet lacking fine-grained policies

How to secure JavaScript apps on TAPs?

Approach: access control by secure sandboxing

- IFTTT apps should not access modules, while Zapier and Node-RED apps have to
- Malicious Node-RED apps may abuse child_process to run arbitrary code

Need access control at module- and context-level

- IFTTT apps should not access APIs other than
 - Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime
- IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need fine-grained access control at the level of APIs and their values

SandTrap monitor

- Enforcing
 - read, write, call, construct policies
- Secure usage of modules
 - vs. isolated-vm and Secure ECMAScript
- Structural proxy-based
 - vs. vm2
- Allowlisting policies at four levels
 - module, API, value, context
- Policy generation
 - Execution mode
- SandTrap Host x : "Hello" x : "Hello" |.x **← ; →** | y : "World" .y **←** y : "World"
- Baseline policies once and for all apps per platform
 - Set by platform
- Advanced policies for specific apps
 - Set by platform but developers may suggest
 - "Only use allowlisted URLs or emails"
- Policies and benchmarks

Baseline policies

Read-only moment API

 Read-only protection of Zapier runtime

 No modules, allowlisted calls on RED object

	Platform	Use case	Policy Granularity	Attacks prevented
er		Baseline	Module/API	Prototype poisoning
	IFTTT Co more with the services you have	Back up new iOS photos in Dropbox	Value	Leak photo URL
	4	Baseline	Module/API	Prototype poisoning
	zapîer	Create a watermarked image using Cloudinary	Value	Exfiltrate the photo
		Baseline	Module/API	Run arbitrary code with child_process
	Node-RED	Water utility control	Context	Tamper with the tanks and pumps

SandTrap take-aways

• Try at https://github.com/sandtrap-monitor/sandtrap

Benchmarking on IFTTT, Zapier, and Node-RED

• Module-, API-, value-, and context-levels

