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Abstract—Trigger-Action Platforms (TAPs) empower appli-
cations (apps) for connecting otherwise unconnected devices
and services. The current TAPs like IFTTT require trigger
services to push excessive amounts of sensitive data to the TAP
regardless of whether the data will be used in the app, at odds
with the principle of data minimization. Furthermore, the rich
features of modern TAPs, including IFTTT queries to support
multiple trigger services and nondeterminism of apps, have been
out of the reach of previous data minimization approaches
like minTAP. This paper proposes LazyTAP, a new paradigm
for fine-grained on-demand data minimization. LazyTAP breaks
away from the traditional push-all approach of coarse-grained
data over-approximation. Instead, LazyTAP pulls input data
on-demand, once it is accessed by the app execution. Thanks
to the fine granularity, LazyTAP enables tight minimization
that naturally generalizes to support multiple trigger services
via queries and is robust with respect to nondeterministic
behavior of the apps. We achieve seamlessness for third-party
app developers by leveraging laziness to defer computation and
proxy objects to load necessary remote data behind the scenes
as it becomes needed. We formally establish the correctness of
LazyTAP and its minimization properties with respect to both
IFTTT and minTAP. We implement and evaluate LazyTAP on
app benchmarks showing that on average LazyTAP improves
minimization by 95% over IFTTT and by 38% over minTAP,
while incurring a tolerable performance overhead.

I. INTRODUCTION

Trigger-Action Platforms (TAPs) like IFTTT (“If This Then
That”) [33], Zapier [54], and Microsoft Power Automate [43]
excel at connecting otherwise unconnected devices and ser-
vices. Consider services that manage users’ data like Google
Calendar for calendar appointments and Trakt for keeping
track of TV shows and movies watched. TAPs enable popular
automation applications (or apps) like “Every morning at 7am,
send a Slack message with the first meeting of the day from
Google Calendar” [29] (app B among our running examples)
or “When you turn your Samsung TV on after 5pm on Sat-
urdays, pick one of the personalized movie recommendations
from Trakt” [37] (app J among our running examples). In
these examples, the TAP gets the initial app inputs from trigger
services (Time and Samsung TV), requests further inputs from
query services (from Google Calendar and Trakt), and sends
the outputs to action services (Slack and Notification).
Privacy concerns. With the convenience and interoperability
of TAPs comes the concern that the TAP is effectively a
“person-in-the-middle”, acting on behalf of the user with
respect to trigger and action services. This poses a privacy

challenge since in the event of a compromised TAP, the users’
sensitive input data is also compromised [10], [9], [15], [1],
[14].
The current practices of TAPs like IFTTT inherently rely

on the push-all approach for input data. When a new event
is emitted by the trigger service, all input data attributes are
indiscriminately pushed to the TAP, regardless of whether
the data will be used in the app execution. This coarse-
grained over-approximation is at odds with data minimization,
a principle stipulating to limit the data to “what is necessary
in relation to the purposes for which they are processed” [21].
This important principle is adopted by legal frameworks like
the General Data Protection Regulation (GDPR) [21] and the
California Privacy Rights Act (CPRA) [18].
Data minimization first of all implies minimizing the pos-

sibility of accessing personal data [45]. Next within the
remaining possibilities, the amount of personal data that is
stored should be minimized. Finally, the time of storing
sensitive data should also be minimized. Our work focuses
on the first, most desired type of minimization: data-access
minimization. This privacy goal, in line with previous work
on data minimization on TAPs [14], is appealing because it is
robust with respect to potential data breaches on TAPs. Indeed,
TAPs not always succeed to safeguard user data received from
trigger services [1].

From triggers to queries. The push-all approach exacerbates
the privacy problem in the presence of multiple sources of
input data. IFTTT allows multiple inputs via the mechanism of
queries [35], [38], a recently introduced feature for paid users
to create, publish, and run apps with additional data sources.
Kalantari et al. [41] identify 90 sensitive queries for access
to private data in categories that include health & fitness,
communication, finance & payments, voice assistants, security
& monitoring, cloud storage, photo & video, connected car,
and contacts.
In app B, the trigger service is Time, triggering the app

at 7am every day. However, the sensitive input of the app is
loaded by a query to Google Calendar. Even though the app
needs information about only one meeting, the TAP exces-
sively loads all attributes of all recent meetings. Moreover,
even if the app only asks for a query conditionally on some
input, a TAP like IFTTT will always load the most recent 50
query events [34] regardless of the input and whether the data
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TAP Minimization wrt Minimization guarantees
IFTTT None Push all, no minimization guarantees

Static minTAP Input-unaware minimization

Dynamic minTAP
Ill-intended TAP Input-sensitive minimization wrt trigger input,

No attributes when skip/timeout,
No support for queries or nondeterminism

LazyTAP TAP willing to minimize Input-sensitive minimization wrt trigger and query inputs

Table I: Comparison of TAPs.

is necessary for the execution.
Similarly, in app J, all recommended movies will be ex-

cessively sent from Trakt to the TAP, letting the TAP make
a randomized pick, even though only one movie is recom-
mended to the user. This example also illustrates the use of
nondeterminism in apps, which can stem from, for example,
random number generation or reading wall time.
Data minimization in TAPs. As summarized in Table I,
IFTTT follows a traditional push-all approach with no data
minimization support with respect to trigger and query data.

Recent work introduces minTAP [14], also reflected in
Table I. minTAP assumes an ill-intended TAP trying to break
data minimization by maliciously manipulating the apps to
extend access to sensitive data and by gaining access attributes
beyond those that are necessary for the apps. The solution
taken by minTAP is preprocessing [8] data on the trigger
service, with the goal of not sending any redundant data to
the TAP. This solution requires a trusted client outside of the
TAP that performs attribute dependency analysis of the apps
and ensures the integrity of installed apps.

Static minTAP performs static analysis of the app at the time
of installation, identifies the necessary attributes and passes the
information to trigger services per app, so that the redundant
attributes are dropped upon trigger events. Static minTAP
performs input-unaware minimization, unable to minimize
attributes in cases when their use is dependent on runtime
values. For app B, this implies always revealing meeting details
even if the meeting does not meet an input-specific condition
(e.g., the meeting location is the office), and for app J, this
implies always revealing the full list of recommended movies
even if only one movie needs to be recommended.

Dynamic minTAP pre-runs the app code in a sandbox on
the trigger service to determine which trigger attributes are
needed and drops the rest of the attributes. Dynamic minTAP
thus performs input-sensitive minimization, gaining precision
compared to static minTAP. Furthermore, the trigger service
has the possibility of skipping events altogether.

Generally, minTAP does not support queries. Unfortunately,
the dynamic solution is fundamentally limited with respect
to queries. Indeed, the trigger service has no access to the
data from the query services, which makes it impossible to be
meaningfully input-sensitive when pre-running the app code.
In app B, the Time trigger does not (and should not) have
access to Google Calendar data. Similarly, the dynamic solu-
tion is fundamentally limited with respect to nondeterminism.
Indeed, running the app code twice fails to reproduce the exact
behavior of the app in the presence of nondeterminism. In

app J, it is hard to guarantee that the outcome of random
number generation will be the same in the pre-run on trigger
service and in the actual run on the TAP. Nondeterminsm like
wall-time reads and scheduling-related nondeterminism is a
challenge to reproduce, even with access to seedable pseudo-
random number generators.
LazyTAP to the rescue. We propose LazyTAP, a new
paradigm for fine-grained on-demand data minimization. Lazy-
TAP breaks away from the push-all approach of coarse-grained
data over-approximation. Instead, LazyTAP pulls input data
on-demand, whenever it is needed by the app execution.
Thanks to the fine granularity, LazyTAP prevents sending
the full calendar event stream and only sends the required
attributes of at most one calendar event in the Slack message
in app B, and only sends at most one movie recommendation
in lieu of sending the whole movie recommendation array in
app J.
LazyTAP assumes the TAP is incentivized to support the

principle of data minimization for the sake of its users and in
the light of the applicable legal frameworks. The possibility
of driving minimization from the TAP itself enables us with a
powerful possibility of pulling data on-demand. This paradigm
is different from assuming the TAP intentionally tries to break
data minimization [14], which necessitates preprocessing [8]
the data before it is sent to the TAP, or encrypting data for
distrusted TAPs [16], [15].
Compared to minTAP, LazyTAP does not require the trigger

service to run the app, as there is only a single run of the app
involved, and there is no need for a trusted client. As trigger
data is pulled on the fly for a given run, LazyTAP guarantees
input-sensitive minimization (see Table I). Further, LazyTAP
supports queries and is robust with respect to nondeterminism
while preserving the behavior of the underlying app, even in
the presence of primitives like random number generation and
wall-time reads. This implies sending precisely the meeting
attributes used in the notification in app B and precisely the
recommended movie in app J. The fact that LazyTAP seeks to
help TAPs to provide data minimization guarantees makes it
attractive for future adoption by TAPs, compared to solutions
that focus on ill-intended TAPs.
The elegance of LazyTAP allows us to achieve seamlessness

for app developers. Under the current TAPs, trigger and
query data is received and stored in an object tree which is
processed by app code. In contrast, LazyTAP creates so-called
remote objects for trigger and query data that look to app
code like local objects but are in fact populated by network
requests to trigger and query services at runtime, and only
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as much as needed by the given app execution. We develop
a novel architecture for on-demand computation in third-party
JavaScript apps that leverages laziness, in the form of deferred
computation, and proxy objects to load necessary remote data
behind the scenes as it becomes needed.

Moving from a push-all to a pull-on-demand paradigm on
the TAP requires changes to the trigger/query services for
compatibility reasons. These changes are straightforward and
can be shimmed on the services themselves, or using third
parties. Shimming on the services does not change the trust
assumption on the services (which already hold user data) and
is the natural choice (services must implement a compatibility
layer with IFTTT already now [34]). Shimming by a third
party is a last resort when modification of the service is not
possible.

We formalize our approach, characterizing the correctness
of LazyTAP and its minimization properties with respect to
both IFTTT and minTAP. We prove that LazyTAP intrinsically
improves minimization of input data in general with reference
to any analysis in the style of minTAP.

The key idea of data-access minimization by on-demand
computation is independent of the TAP and can be realized on
various architectures. Yet for prototyping LazyTAP, we pick
IFTTT as a starting point with the benefit of allowing a direct
comparison with IFTTT and IFTTT-based implementation of
minTAP.

Due to the novelty of queries and recently introduced
paywalls for users to publish apps with queries, these apps
are not frequently found among the public IFTTT apps. Yet
our empirical analysis confirms that the published apps with
queries do exhibit a broad range of data dependencies, beyond
the reach of data minimization in minTAP.

We implement and evaluate LazyTAP on app benchmarks
showing that on average LazyTAP improves minimization by
95% over IFTTT and by 38% over minTAP, while incurring a
tolerable performance overhead.

The source code and benchmarks are available [2]. The
implementation is readily deployable on AWS Lambda [4].
Contributions. The paper offers these contributions:

∙ We introduce LazyTAP, a new paradigm for on-demand
computation on trigger-action platforms. Breaking away
from the coarse-grained push-all approach, we enable
pull-on-demand computation where data is pulled on
demand at a fine level of granularity (Section III).

∙ We develop an architecture that leverages a novel combi-
nation of laziness in the form of deferred computations
and proxy objects to pull remote data behind the scenes
on a by-need basis, in a fashion seamless to app devel-
opers (Section III).

∙ We formally establish the correctness of LazyTAP and
its minimization properties with respect to both IFTTT
and minTAP (Section IV).

∙ We implement LazyTAP in a setting based on IFTTT
and demonstrate by benchmarks that on average LazyTAP
improves minimization by 95% over IFTTT and by 38%
over minTAP (Section V).

II. MOTIVATING EXAMPLES

This section motivates the need for LazyTAP in comparison
with IFTTT and minTAP by three examples of increasing com-
plexity. As discussed in Section I, IFTTT has no minimization
guarantees, always asking for all information from services,
while minTAP precomputes the set of required attributes.
LazyTAP goes further and leverages on-demand lazy compu-
tation to fetch only the attributes accessed during execution.
The examples in this section are our running examples: the
first two examples are the ones foreshadowed in Section I,
and all three examples are a part of the benchmarks used
in the detailed comparison in Section V, apps B, J, and E,
respectively.

A. Threat model and assumptions
Prior to presenting the motivating examples, we recap the

threat model and assumptions mentioned in Section I. The
asset we protect in our setting is sensitive user data. Upon
executing an installed app on a TAP, sensitive user data enters
the TAP from trigger and query services. Our focus is on
data-access minimization to limit the amount of data sent
from trigger and query services to the TAP. Generally, data
minimization seeks to mitigate the threat of data breaches
resulting from attacks, human error, system failures, unautho-
rized access to personal information, data misuse or abuse,
and non-compliance with privacy regulations [21], [45]. By
limiting the amount of sensitive data accessed, TAPs thus
reduce the potential impact of data breaches and limit the
amount of sensitive information that can be compromised.

B. Calendar to Slack
The first example app (B) is an automation app for personal

productivity. Every work day starts with a Slack notification
reminding the first meeting from the user’s calendar [29].

let location = GoogleCalendar.historyOfEventFromSearchStarts[0].Where;
if (location != 'office') {

Slack.postToChannel.setMessage("First meeting is not in office!");
} else {

Slack.postToChannel.setTitle(
GoogleCalendar.historyOfEventFromSearchStarts[0].Title);

Slack.postToChannel.setMessage("First office meeting starts at" + 
GoogleCalendar.historyOfEventFromSearchStarts[0].Starts);

}

("important",
"today")

historyOfEventFromSearchStarts

Figure 1: A meeting notification app.

Figure 1 illustrates the app structure. A certain time triggers
the app that queries Google Calendar to extract today’s impor-
tant meetings. In case the first meeting occurs in the office,
the Slack notification contains the title and the starting time
of the meeting. Otherwise, the user will be notified that the
first meeting’s location is not the office.
In this app, the list of personal meetings is privacy-sensitive

as the detail of the user’s schedule is being shared with the
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TAP. From a data minimization perspective, only the location
of the first meeting along with the title and the starting time
if it happens in office is necessary to operate the automation.

All the calendar events from the query are sent to IFTTT,
which is excessive from the data minimization point of
view. While dynamic minTAP fundamentally fails to support
queries, static minTAP extended to support queries will over-
approximate and report these attributes as necessary even if
the meeting is not in the office. LazyTAP, on the other hand,
requests the location of the first meeting and checks whether
it is office. Then it asks for the title and time of the first event
only if the else branch is taken.

C. Movie recommender
The second example is a simplification of an existing IFTTT

app (J) that automates movie recommendation workflow ac-
cording to user preferences [37]. Once the user turns on the
Samsung Smart TV, a movie will be suggested to watch.

let index = Math.floor((Math.random() * Trakt.recommendedMovies.length))
IfNotifications.sendRichNotification.setMessage(

"This is the movie you’d like to watch: " + 
Trakt.recommendedMovies[index].MovieTitle)

recommendedMovies

Figure 2: A movie recommender app.

As shown in Figure 2, the trigger is the TV being turned
on. The app picks a random item from the personalized list of
recommended movies based on the user’s profile in Trakt, the
platform that keeps track of user’s watched movies and TV
shows. Hence, the list of recommended movies is privacy-
sensitive.

Data minimization demands sharing the minimum amount
of necessary data with third-party entities like TAPs. This app
only reads the number of movies and the title of the randomly
selected movie from the list. IFTTT excessively sends the
whole array of recommended movies.

Dynamic minTAP is inherently inapplicable for this exam-
ple, not only due to the lack of support for queries, but also
because the trigger service cannot predictably reproduce the
outcome of random number generation of the app run on the
TAP. Static minTAP cannot do better than IFTTT for this app
either because no static approach is able to predict the random
number by analyzing the app source code.

LazyTAP follows the data minimization principle by re-
questing the data attributes accessed by the execution on
demand. Thus, only the number of recommended movies and
only the movie title of the randomly picked element are sent
to the TAP.

D. Parking space finder
The third example (E) is a parking space finder app facili-

tating tasks of a morning work routine. The user leaves home

to commute to the meeting place by car. Once the door gets
closed, the app looks for a parking area nearby the upcoming
meeting’s location and invokes the navigator on an Android
phone with the parking location.

let events = GoogleCalendar.historyOfCalendarEventBeginnings("work", "01:00");
if (events.length != 0) {

let parkingLocation = Yelp.searchBusiness(events[0].Where, "parking");
if (parkingLocation.length != 0) { 

AndroidDevice.startNavigation.setQuery(parkingLocation[0].BusinessAddress);
}

} else { AndroidDevice.startNavigation.skip(); }

("work", 
"01:00")

historyOfCalendarEventBeginnings

(calendarEvent[0].Where, 
"parking")

BusinessAddress

Figure 3: A parking space finding app.

In Figure 3, closing the door is detected by the smart sensor,
which triggers the app. Then, the app checks whether a work
meeting is going to start in the next hour. If so, it queries
to find the nearest parking to where the upcoming meeting is
held. If a suitable parking spot is found, the app sends the
location of the parking to the user’s navigator.
This example represents the practicality of multiple queries

relying on one another, creating a chain of dependent input
sources. In this app, both the meeting and parking locations
contain privacy-sensitive information whereas the latter de-
pends on the former.
The app only uses the location of the next meeting, if

existing, and the location of the parking space, if found. The
other entries and attributes in the two query arrays need to be
shared by the push-all approach. The increased expressiveness
of allowing queries to depend on any input data, from both
trigger and query services, is a benefit of LazyTAP over
IFTTT and minTAP in addition to allowing for precise data
minimization in a setting with queries and nondeterminism.
Dynamic minTAP fails to support queries and, hence, also the
more expressive version of queries, while an extended version
of static minTAP would mark all four attributes visible in
the app code as necessary. LazyTAP precisely picks up only
the attributes on-demand, tightly following the three possible
executions of the app.

III. LAZYTAP
LazyTAP delivers precise data minimization in the presence

of queries, and is both app compatible with IFTTT and
expressible as an extension to IFTTT. This section introduces
the architecture of LazyTAP and highlights the changes to the
trigger and query services as well as to the IFTTT runtime
required to integrate LazyTAP.
An app in IFTTT consists of app configuration and filter

code [32]. The app configuration specifies the services in-
volved in the app: one trigger, zero or more queries, and one
or more actions. Figure 4 illustrates the execution procedure
for a schematic example. Upon trigger, IFTTT creates trigger
data (T), performs queries and creates query data (Q), and
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Trigger

Query

Action

Config

Filter

T

A

T, Q(T.t), A

if (Q[i].q) A.a=0;

T.t

Q

Figure 4: IFTTT architecture.

initializes action objects (A), all specified in the app configu-
ration. Inputs to query services can be dependent only on the
trigger data attributes (T.t) while action objects are configured
by the data coming from the trigger and query services. The
filter is a JavaScript code snippet regulating the app execution;
it might overwrite the action object properties or skip any of
the actions. In the figure, the value of one of the action object
properties (A.a) implicitly depends on a query data attribute
(Q[i].q). After executing the filter code, the resulting action
objects are passed to the services to perform the corresponding
actions.

A. Architecture of LazyTAP
The main difference between IFTTT and LazyTAP lies in

how and when data is sent from the trigger and query services
to the TAP. Instead of adopting the push-all approach of
IFTTT, where all trigger data is pushed when an event occurs
and all query data is fetched before running the app, LazyTAP
develops a pull-on-demand paradigm.

Figure 5 illustrates the architecture of LazyTAP. To support
the pull-on-demand approach, the data sent to the TAP by the
trigger and the queries is replaced by access tokens that grant
subsequent access to the data, allowing it to be fetched on a by-
need basis. This change requires modifications to the trigger
and query services in addition to the IFTTT runtime.

In the former case, we suggest the use of shims that adopt
the original trigger and query services to the on-demand
setting. It is an immediate choice as the input services are
trusted by users and already obliged to meet the compatibility
requirements of IFTTT [34]. Shims can be on the services, the
straightforward approach which our prototype employs. A third
party can provide the shim layer for the services that cannot be
modified. Generally, while data minimization via on-demand
computation is fundamental to LazyTAP, the use of shims is
not, rather being subject to implementation alternatives.

In the latter case, we make use of two extensions to the
IFTTT runtime, remote objects and lazy queries, in combina-
tion with deferred computation using thunking. Remote objects
and lazy queries are used to give the filter code seamless
access to the trigger and query data, while ensuring the on-
demand approach and form the core of the app compatibility.
The details of the shims, remote objects, and lazy queries are
described below.

On trigger, LazyTAP creates a remote object representing
the trigger data (T) backed by the given an access token

Query shim
T, Q(T.t), A

if (Q[i].q) A.a=0;

Action

T

tokenQ,
Q[i].q

A

LazyTAP

Trigger shim

tokenT

T.t

Q

T.t

T.t

Config

Filter

Figure 5: LazyTAP architecture.

(tokenT), creates a remote object representing the query data
(Q) backed by a lazy query, and initializes the action objects
(A), all specified in the app configuration. Note that the
computation of all query arguments and initial values of the
action objects is deferred by thunking to prevent premature
fetching of attributes.
The filter code is exactly the same code as in the IFTTT

app execution. In the figure, based on a branch over a query
data attribute (Q[i].q), the action object property (A.a) gets
updated. The difference to the execution of the app in IFTTT
is that the query is not performed until the query attribute
is actually needed by the filter code. At this point, the trigger
attribute (T.t) is fetched and the query is performed resulting in
an access token (tokenQ). In turn, this token is used to fetch
the query data attribute. After executing the filter code, the
resulting action objects are processed to perform any delayed
computation and the result is passed to the services to perform
the corresponding actions.
Trigger and query shims. To adopt the existing trigger and
query services, we suggest the use of caching shims. Such
shims can either execute on the trigger or query services, or be
run on separate trusted services. For triggers, the shim service
receives and caches the event data (T), and then generates an
access token (tokenT) that is sent to LazyTAP. The query shim
works in a similar way. Instead of querying the service directly,
LazyTAP queries the shim at the first access to a query data
attribute (Q[i].q) during the app execution. To do so, LazyTAP
prepares the query inputs by fetching the required attributes
(T.t) from the trigger’s shim and sends the query. The shim
service then forwards the query to the actual query service
and receives the result (Q). From this point, the shim service
acts identically to the trigger’s shim, sending an access token
(tokenQ) along with the requested attribute.
Remote objects and lazy queries. Ordinary IFTTT apps
assume that the data from the trigger and queries is present
as an object tree in the execution environment. For the sake
of data minimization and to retain app compatibility, we
introduce the notion of remote object and lazy query that
provide seamless integration of the existing app into the
LazyTAP fetch-on-demand setting.
Remote objects rely on JavaScript proxies, special objects
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that allow for programmatic capture of any object interac-
tion [19]. In particular, remote objects are proxies that intercept
every read and write to them. A remote object is either
associated with an access token and a base path that identifies
the position of the remote object in the object tree or with a
lazy query.

When reading a property on a remote object backed by
an access token, one of two things can happen depending
on whether the property has been accessed before or not.
In the former case, the value is fetched from the cache and
returned, while in the latter case, the access token, the base
path, and the property name are used to fetch, cache, and return
a new value. If the fetched property is a primitive value, it is
used without further modification. Otherwise, if the fetched
property is indicated to be an object, a new remote object is
created, extending the base path with the property name. The
caching mechanism prevents values from being fetched more
than once.

When reading a property on a remote object backed by a
lazy query, the query is first performed yielding an access
token. This token together with an empty base path then
replaces the lazy query and is used to perform the triggering
and future property reads. Remote arrays extend remote objects
to include the special property length.

Lazy queries are queries that are not initialized or performed
until their first use. However, since queries can depend on
trigger data, we need a way to avoid their creation causing
premature reads of trigger data. For this reason, we allow
thunking of query arguments. Thunking is a common way to
encode delayed computation and is performed by wrapping
a computation in a function. The thunked computation, e.g.,
the projection of a remote object, is delayed until the thunk
is invoked. This way we can create lazy queries that simply
store their thunked arguments until the first use. On the first
use, the lazy queries evaluate the arguments, set up the query
and return an access token associated with the query result.

The LazyTAP runtime. To develop a fully seamless runtime
for app developers of IFTTT, we must change how the
execution environment of the app is built. Essentially, we
replace trigger data with the remote object establishing the
connection to the trigger shim. In a similar way, for each query
service, we replace the query data with the corresponding
remote array object. We pass a thunked value as the query
input to defer computing query inputs and the resulting object
until the first read access of the query object. An important
part of an app configuration is the specification of action object
values. As mentioned earlier, the filter code might overwrite
action objects or skip the execution of the action entirely,
meaning that (parts of) the action objects defined in the app
configuration are no longer needed. In case the initial values
of the action objects rely on trigger or query data, the input
data is at risk of being fetched prematurely. Thus, we thunk the
action default values, making sure they are not assigned before
running the filter code. After the execution of the filter code
and before returning the action objects, we strictify and assign

the default values to the action fields only if they have not been
set earlier in the filter code. The post-app procedure guarantees
that the preset values of the action objects are computed,
possibly by fetching some data attributes from trigger or query
services. Appendix A details these steps.
LazyTAP app compatibility and expressivity. It is important
to note that the filter code remains untouched, as trigger and
query objects are now proxy objects of the corresponding
lazy services. Equally important is that the pre- and post-filter
operations are naturally derived from the app configuration.
Therefore, LazyTAP runs the original app using laziness to
ensure that input data attributes are only fetched when they
actually play a role in computing the final values of the action
objects. LazyTAP is fully seamless to app developers and users
as they notice no change in the execution behavior.
The use of lazy queries allows for greater freedom than what

the current state of IFTTT does. For example, it is possible
to make queries dependent on values from other queries, both
directly by passing thunked query projections to queries and
indirectly by creating different queries based on the values of
other queries or trigger data. Thus, the programming model
created by LazyTAP is more general and expressive than
the one presented by IFTTT (see Section II-D). In fact, the
essence of minimizing user data by on-demand computation
can independently be applied to other TAP architectures.

B. On performance

In the proposed architecture, LazyTAP trades communica-
tion overhead for privacy. In the TAP setting, however, this
is acceptable. For triggers, it rarely matters if the response
is delayed by a few seconds. Network congestion and other
factors already make services like IFTTT unreliable regarding
response time. We report on the elapsed time for app exe-
cutions under LazyTAP in our local setup and we discuss
the effective factors in terms of performance in Section V.
Further, some triggers provided by IFTTT are polling based.
For such triggers, IFTTT offers a polling frequency of once
every 15 minutes [42]. This shows that IFTTT is not meant
to be a real-time service. This said, for apps that pull a lot
of data the overhead can be significant. We envision that a
static analysis that clusters data together to identify data that
is connected in the sense that if the root is fetched so is the
remaining data can significantly improve the overhead. In such
cases, instead of fetching a dependency tree part by part, the
entire subtree is transferred as a JSON-encoded string.

IV. FORMALIZATION

To reason about the correctness and precision of LazyTAP,
we formalize the core of our approach. The focus of our
modeling is the interaction between lazy computation, lazy
queries, remote objects (including fetching and caching of
values), and side effects. Since a full model of JavaScript
is out of the scope of this paper, we abstract away from
language-specific and implementation details. Yet we ensure
that the core of the formal model remains in a one-to-one
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e ::= v | x | e⊕ e | f (e) | e[e] | {} | T | Q(k, e) | A(m)
| () ⇒ e

i ::= x | i[e]
c ::= skip | i := e | if e then c else c | while e do c | c; c

Figure 6: Language syntax.

correspondence with the core of the implementation in a
semantic sense.

A. Syntax
We model the app code as a while language with ob-

jects, trigger data, queries, and actions. We assume the app
configuration is given in the style of IFTTT apps, described
in Section III. We present two semantics for the language:
one strict semantics for IFTTT apps (Section IV-B) and one
lazy semantics for the corresponding LazyTAP apps (Sec-
tion IV-C), introducing the execution steps of the app code
together with the given app configuration.

The syntax of the language is presented in Figure 6. The
expressions, denoted by e, contain primitive values, variables,
binary operators, function call of built-in functions, computed
object projection, empty object creation, the dedicated syntax
for accessing the trigger data T , setting up queries Q, and
accessing actions A, as well as thunks ()⇒ e. Note that thunk
expressions are not part of the strict syntax. Query setup and
actions take an argument, k ∈ Query and m ∈ Action, respec-
tively, identifying the query or action service. To simplify the
formal model and without loss of generality, we assume that
the built-in functions and queries only take a single argument.
Multiple arguments can be encoded as objects. For the same
reason, methods are encoded by passing the object the method
is invoked on as part of such argument object and arrays are
encoded as integer indexed objects with a dedicated length
property. The encodings are elaborated in Appendix B.

The statements, denoted by c, are skip, assignment to
variables and properties, if statements, while statements, and
sequences. Together expressions and statements model the
core of IFTTT and LazyTAP apps.

As explained in Section III-A, LazyTAP converts trigger and
query objects to remote objects and employs thunk expressions
to defer computation, both formalized in the lazy semantics.
Figure 7 shows a LazyTAP app in the while language, trans-
formed from the corresponding IFTTT app, where the thunk
constructs are added to the query setup expression. It is a
snippet of the model of app B, introduced in Section II-B. The
query object calendar is the result of the query to Google
Calendar meeting events for today. The filter code sets the
Title property of the Slack action object to the title of the
meeting if taking place in office.

B. Strict semantics
We present the strict semantics for IFTTT apps. Let the

strict values sv ∈ SVal ∶∶= pv | r be primitive values
pv ∈ PVal and references r ∈ Ref . Let variable environments
E ∶ Var → SVal be mappings from variables to strict values,
objects o ∶ Prop → SVal be mappings from properties

1 // query setup
2 calendar ∶= ()⇒ Q(GoogleCalendar, () ⇒ today);
3 // filter code
4 if (calendar[Where] == office) then
5 A(Slack)[Title] ∶= calendar[Title]

Figure 7: A snippet of the lazy model of app B.

p ∈ Prop, and heaps H ∶ Ref → SObj be maps from references
to objects.
An app configuration Γ = ⟨t, q, a⟩ is a triple of the

reference to the strict trigger object t ∈ Ref , a query function
q ∶ (Query×String)→ String that takes a query identifier and
a string then returns a string representing the query result,
and a mapping a ∶ Action → Ref from action identifiers to
references to the corresponding action objects. Queries taking
and returning strings models that query services receive their
arguments and return their results encoded as JSON objects.
We assume two functions encJSON ∶ SVal → String and
decJSON ∶ String × H → (Ref × H) that encode primitive
values and decode string into object trees.
We present the strict semantics using two big-step eval-

uation relations, one for the expressions of the form
Γ |= (e,E,H) ⇓s (sv,H), and one for statements of the form
Γ |= (c,E,H) →s (E,H). Evaluation of expressions computes
an expression to a strict value, given the app configuration,
a variable environment, and a heap. Statements are environ-
ment transformers mapping variable environments and heaps
to (potentially) modified environments and heaps. Note that
expression evaluation may modify the heap due to function
calls and queries. The evaluation rules are mostly standard.
For space reasons, we explain a selection of the non-standard
rules, where Appendix D presents the complete set of rules.
Function calls. We assume a set of primitive functions that
model the execution environment of JavaScript. Function calls
are performed using the apply function that takes the function
name, the argument, and a heap, then returns the result and a
possibly modified heap. This allows functions to model method
calls as well.

Γ |= (e,E,H1) ⇓s (sv1,H2)
apply (f , sv1,H2) = (sv2,H3)

Γ |= (f (e),E,H1) ⇓s (sv2,H3)
sevCall

Trigger evaluation. Trigger evaluation simply returns the
trigger reference. Note that the trigger reference is given as
part of the app configuration.

⟨t, q, a⟩ |= (T ,E,H) ⇓s (t,H)
sevTrigger

Query evaluation. Queries are performed by first encoding
the argument as a JSON string, performing the query, and then
decoding the resulting string. Decoding the returned result may
need creating an object tree, where the decoding function may
modify the heap.
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⟨t, q, a⟩ |= (e,E,H1) ⇓s (sv,H2)
q(k, encJSON(sv)) = j

decJSON(j,H2) = (r,H3)

⟨t, q, a⟩ |= (Q(k, e),E,H1) ⇓s (r,H3)
sevQuery

Action evaluation. The action evaluation simply returns the
action object associated with the action service.

a(m) = r

⟨t, q, a⟩ |= (A(m),E,H) ⇓s (r,H)
sevAction

C. Lazy semantics
We present the lazy semantics for LazyTAP apps, modeling

the execution steps of the transformed runtime where trigger
and query objects are remote objects (see Appendix A for
information about the transformation).
In our implementation [2], there are separate classes for

remote objects (RemoteObject) and arrays (RemoteArray)
that use proxies to implement the fetching and caching in
a seamless manner. Both rely on a class for lazy services
(LazyService) that implements lazy queries and triggers. In
the formalization, those classes are represented by dedicated
syntax (instead of being encodable in the formalized lan-
guage), where the semantics for the dedicated syntax captures
the semantics of the implementation. Thus, remote projection
in the lazy semantics models the execution of the remote
objects and arrays, while fetching models the execution of
the lazy service together with the strictification performed on
the arguments of lazy queries when the corresponding remote
object is projected.
Let the remote values rv ∈ RVal ∶∶= sv | r be strict

values or remote references r ∈ RefR ⊂ Ref , i.e., ref-
erences to remote objects, defined below. Let lazy values
lv ∈ LVal ∶∶= rv | thunk(e) be remote values and lazy
computations (thunks). We build a corresponding lazy execu-
tion environment as follows. Let lazy variable environments
E ∶ Var → LVal be maps from variables to lazy values,
lazy objects o ∶ Prop → LVal be maps from properties
to lazy values, and lazy heaps H ∶ Ref → LObj be maps
from references to lazy objects. In addition, let remote heaps
R ∶ Ref → Fetcher ⊎ (Query × LVal) be mappings from
remote references to either fetchers or lazy queries. Remote
objects are modeled by references r ∈ RefR, where the lazy
heap maps the reference to the cache objects and the remote
heap maps the reference to either a lazy query or a fetcher.

Unlike the strict semantics for IFTTT apps, LazyTAP does
not assume that the data from the trigger and queries is in
the initial execution environment as a complete object tree.
Instead, the remote trigger object is a fetcher and the remote
query object is a lazy query. The fetcher (b, fF ) is a pair of
a base path b and a fetcher function fF , where the fetcher
function is used to perform on-demand fetching of properties
using the base and the property name. On the first interaction
with a remote query object, the lazy query is performed and
replaced by a fetcher. This is how trigger and query objects

are treated similarly in LazyTAP. Note that remote objects are
immutable, a key condition to guarantee the bijection relation
between the strict and lazy execution environments.
A lazy app configuration Γ = ⟨t , q, a⟩ is a triple of a

reference t ∈ Ref to a remote trigger object, a query function
q ∶ (Query×String)→ Fetcher that returns fetchers instead of
returning a string, and a mapping a ∶ Action → Ref from
action identifiers to references to the corresponding action
objects. We assume two functions encJSON ∶ SVal → String
and decJSON ∶ String → PVal ⊎ {unit} that encode a
query parameter as a string and decode the result. Note
that the decoding now either returns a primitive value or an
indication that the fetched property contains an object, rather
than sending over the entire objects.
We present the lazy semantics using two big-step

evaluation relations, one for expressions of the form
Γ |= (e,E ,R ,H) ⇓l (lv,R ,H) and one for statements of the
form Γ |= (c,E ,R ,H)→l (E ,R ,H). Evaluation of expressions
computes an expression to a lazy value, given the lazy
app configuration, a lazy variable environment, a lazy heap,
and a remote heap. Statements are environment transformers
mapping lazy variable environments and heaps to (potentially)
modified variable environments and heaps. Note that expres-
sion evaluation may modify the heaps due to function calls
and queries. For space reasons, we only explain a selection
of the non-standard rules pertaining to projection of remote
objects, query establishment, and thunk creation. Appendix D
presents the complete set of rules.
Projection. The lazy semantics has both local objects and
remote objects, reflected in the semantics for projection.

Γ |= (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ |= (e2,E ,R2,H2) ⇓l (p,R3,H3)

H3(r) = o o(p) = rv

Γ |= (e1[e2],E ,R1,H1) ⇓l (rv,R3,H3)
levPrjLocal

Γ |= (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ |= (e2,E ,R2,H2) ⇓l (p,R3,H3)

RProject(Γ , r, p,E ,R3,H3) = (rv,R4,H4)

Γ |= (e1[e2],E ,R1,H1) ⇓l (rv,R4,H4)
levPrjRemote

Remote projection. Intuitively, remote projections are per-
formed by first looking in the cache.

H(r) = o o(p) = rv

RProject(Γ , r, p,E ,R ,H) = (rv,R ,H)
Cache

If the value has not been fetched yet, the fetcher is used
to fetch the value before caching it. In the example shown
in Figure 7, the projection access to Where and Title of the
calendar query object calls the fetcher and caches the values.

R1(r) = F H1(r) = o1 p ∉ dom(o1)
FetchDecode(F , p,R1,H1) = (rv,R2,H2)
o2 = o1[p → rv] H3 = H2[r → o2]

RProject(Γ , r, p,E ,R1,H1) = (rv,R2,H3)
Fetch
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Fetching. Depending on whether the fetched value is a prim-
itive value or an object, either the value is returned or a new
remote object is created by extending the base of the fetcher.

fF (b.p) = j decJSON(j) = pv
F = (b, fF )

FetchDecode(F , p,R ,H) = (pv,R ,H)
fetchValue

fF (b.p) = j decJSON(j) = unit
r ∉ dom(H1) r ∉ dom(R1)

H2 = H1[r → {}] R2 = R1[r → (b.p, fF )]
F1 = (b, fF ) F2 = (b.p, fF )

FetchDecode(F1, p,R1,H1) = (r,R2,H2)
fetchObject

In case the remote object is backed by a lazy query (e.g.,
Line 4 in Figure 7), the query must first be performed before
using the resulting fetcher to fetch the value.

R1(r) = (k, lv)
⟨t , q, a⟩ |= (lv,E ,R1,H1) ↓s (rv,R2,H2)

q(k, encJSON(rv)) = F R3 = R2[r → F ]
Rproject(⟨t , q, a⟩, r, p,E ,R3,H2) = (rv,R4,H3)

RProject(⟨t , q, a⟩, r, p,E ,R1,H1) = (rv,R4,H3)
Query

Strictification. Since lazy queries may contain lazy values,
we must strictify the argument before performing the query.
Strictification only affects thunks that are performed. Other
values are returned as is.

Γ |= (rv,E ,R ,H) ↓s (rv,R ,H)
RVal

Γ |= (e,E ,R1,H1) ⇓l (rv,R2,H2)

Γ |= (thunk(e),E ,R1,H1) ↓s (rv,R2,H2)
Thunk

Queries and thunks. Lazy queries are not performed on the
fly, but rather a new remote object backed by the lazy query
is created (e.g., Line 2 in Figure 7).

Γ |= (e,E ,R1,H1) ⇓l (lv,R2,H2)
dom(r) ∉ R2 dom(r) ∉ H2

R3 = R2[r → (k, lv)] H3 = H2[r → {}]

⟨t , q, a⟩ |= (Q(k, e),E ,R1,H1) ⇓l (r,R3,H3)
levLQuery

To allow for lazy queries, it is important that we can defer
projection of remote objects until the need arises. This is
possible with the help of thunking, which simply stores the
thunked expression for later execution. There are limitations
on how thunking is allowed to ensure correctness. Thunks may
not be nested. Also, the free variables of a thunk must only
refer to remote objects. The immutability of the remote objects
ensures that the thunk evaluates to the same result regardless
of when evaluation takes place.

Γ |= (()⇒ e,E ,R ,H) ⇓l (thunk(e),R ,H)
levThunk

D. Correctness and precision
We show the correctness of the lazy semantics by proving

that the execution of a program in the strict and the lazy se-
mantics coincide. To do so formally, we prove preservation of
a lazy-models-strict relation. The relation encodes that a lazy
environment models a strict environment in the sense that if
the lazy environment is completed, i.e., if all the remote values
are fetched, the result is isomorphic to the strict environment.
Let � ∈ (Ref ∪ Ref × Fetcher) × Ref be an annotated bijection
on references and remote references. While the definition of
the lazy-models-strict relation (Γ ,E ,H) ≃� (Γ,E,H) is rather
technical, the intuition behind it is more direct.
Figure 8 illustrates the relation. The gray triangles depict

local object graphs and the white triangles represent remote
object trees. The lazy-models-strict relation is rooted in the
variables, trigger, and actions, extending pointwise on the
heaps. Local object graphs are equal up to isomorphism,
which is enforced by the use of the bijection �. In the figure,
(p1, p2) ∈ � holds since they both reside in the variable x in the
respective environment. In turn, all local references in � are
then demanded to be pointwise equivalent. Due to the use of
JSON to transfer trigger and query data, remote object graphs
are proper trees. The idea is to express that a remote object tree
properly models the corresponding local object graph. This is
depicted in two ways in the figure to show that this may occur
at any point in the environment or on the heap. In the figure
below, the variable y contains a remote object on the lazy heap
and the corresponding local object on the strict heap; thus it
causes ((p4, f2), p3) ∈ �, where f2 is the fetcher function for
the remote object tree. Unlike local objects, we cannot simply
extend the equivalence relation pointwise because the remote
object tree may be partial. Instead, we rely on a notion of
path equivalence between the remote object tree (defined by
the fetcher), its partial cache tree, and the corresponding local
object graph. This suffices due to the fact that remote objects
are immutable and free of cycles. We refer to a pair of a lazy
and a strict environment that is related via the lazy-models-
strict relation as equivalent environments.
We prove correctness of LazyTAP in terms of two theorems:

one stating that given equivalent environments, LazyTAP can

f1

f2

x

y

p1p2

p3p4

Strict EnvironmentLazy Environment

Figure 8: Lazy-strict isomorphism.
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mimic any app execution of IFTTT (Theorem 1), and the
other one that says LazyTAP does not add any execution that
the strict semantics of IFTTT cannot perform (Theorem 2).
Technically, we prove the theorems using two lemmas. The
former (Simulation, in Appendix E) expresses that in equiv-
alent environments, IFTTT is able to execute an app if and
only if LazyTAP can. The latter (Preservation of the lazy-
strict equivalence, in Appendix E) states that the resulting
environments of such executions are indeed equivalent.

Relating strict execution to lazy execution relies on remov-
ing top-level thunking with the thunked expression, as thunks
are not executable in the strict semantics. Only allowing top-
level thunking simplifies the lazy semantics, which is in line
with our restricted use of thunking in queries and actions. The
removal of top-level thunks is performed by the compileL2S(c)
function, described in Appendix C.

Theorem 1 (LazyTAP apps model IFTTT apps). If the strict
semantics is able to run, then so is the lazy semantics in
every equivalent environment and the resulting environments
are equivalent. Formally,

∀c, c′, �1,Γ ,E1,R1,H1,Γ,E1,H1E2,H2.
(Γ ,E1,R1,H1) ≃�1 (Γ,E1,H1) ∧

c′ = compileL2S(c) ∧
Γ |= (c′,E1,H1)→s (E2,H2) ⇐⇒

∃�2,E2,R2,H2.Γ |= (c,E1,R1,H1)→l (E2,R2,H2) ∧
�1 ⊆ �2 ∧ (Γ ,E2,R2,H2) ≃�2 (Γ,E2,H2).

Proof. According to Simulation, the lazy semantics is able
to follow any execution of the strict semantics in equivalent
environments, and preservation gives that the resulting envi-
ronments are indeed equivalent.

Theorem 2 (LazyTAP apps model only IFTTT apps). If the
lazy semantics is able to run, then so is the strict semantics in
every equivalent environment and the resulting environments
are equivalent. Formally,

∀c, c′, �1,Γ ,E1,R1,H1,Γ,E1,H1E2,R2,H2.
(Γ ,E1,R1,H1) ≃�1 (Γ,E1,H1) ∧

c′ = compileL2S(c) ∧
Γ |= (c,E1,R1,H1)→l (E2,R2,H2) ⇐⇒

∃�2,E2,H2.Γ |= (c′,E1,H1)→s (E2,H2) ∧
�1 ⊆ �2 ∧ (Γ ,E2,R2,H2) ≃�2 (Γ,E2,H2).

Proof. Based on Simulation, the strict semantics can follow
any execution of the lazy semantics in equivalent environ-
ments. Preservation also states that the resulting environments
are indeed equivalent.

With the help of Correctness, we establish a general preci-
sion argument for all sound minTAP-style static and dynamic
minimizers.

Theorem 3 (Precision of LazyTAP). LazyTAP is at least as
precise as any sound (static or dynamic) minimization tech-
nique; i.e., the resulting environment after executing LazyTAP
will not contain more information than that produced by any
preprocessing minimization technique.

Proof. Both static and dynamic minimization techniques result
in minimized initial environments. Correctness of the static
and dynamic minimization techniques gives that the app ex-
ecution successfully maps the minimized initial environments
to a final environment. The result follows from Theorem 1, as
every strict environment has a lazy counterpart.

Precision over static and dynamic minTAP follows imme-
diately from Theorem 3 because both are sound minimization
techniques based on data preprocessing.

Corollary 1 (Precision of LazyTAP vs. static minTAP). Lazy-
TAP is at least as precise as static minTAP.

Corollary 2 (Precision of LazyTAP vs. dynamic minTAP).
LazyTAP is at least as precise as dynamic minTAP (except
for skipping executions of the apps without queries).

Note that the apps with queries are fundamentally out of the
reach of dynamic minTAP. Static minTAP, however, overap-
proximates the required object properties while LazyTAP has
access to the runtime values. In Figure 7, static minTAP puts
the value of the query object property calendar[Title] in the
minimized initial environment, due to the lack of execution
prediction in advance. When the value of calendar[Where] is
not office, applying the lazy semantic rules on the app yields a
final environment of LazyTAP execution that does not contain
unnecessary information of calendar[Title].
Following from Theorem 3 and in line with the example

above, LazyTAP attains a higher level of precision for the
apps with queries for the executions that static minTAP is
overly conservative; i.e., the minimized initial environment of
minTAP might contain more information than the resulting
environment produced under LazyTAP.

V. EVALUATION

This section evaluates the minimization guarantees and
performance of our implementation of LazyTAP. We have
implemented LazyTAP in a setting based on IFTTT’s archi-
tecture, including LazyTAP’s runtime (see Appendix A) and
app code as well as shimmed trigger and query services,
explained in Section III-A. To ensure a fair comparison, we
compare LazyTAP with IFTTT and a suggested extension
on static minTAP [14] that conservatively identifies all the
existing trigger and query attributes in the app code. We
evaluate how LazyTAP minimizes trigger and query data
transferred to the TAP on a collection of benchmarks. The
study shows LazyTAP outperforms the extended minTAP by
applying input-sensitive data minimization and preserves the
behavior of app executions.
This section addresses the following research questions:
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RQ1 How successful is LazyTAP in terms of data minimiza-
tion for apps with various dependency patterns and code
structures, including query chains (Section V-B)?

RQ2 How much minimization does LazyTAP achieve for the
apps with filter code from the dataset [14] that make use
of queries (Section V-C)?

RQ3 How much percentage does LazyTAP improve overall
regarding attribute minimization compared to IFTTT and
static analysis of minTAP (Section V-D)?

RQ4 How much overhead is imposed by LazyTAP compared
to the original execution under IFTTT (Section V-E)?

A. Experimental setup
The benchmarks consist of two categories of IFTTT apps.

The first category consists of six representative apps we
developed, inspired by apps in IFTTT’s store [27] to cover
several classes of dependency patterns. The second category
consists of actual apps with queries from the dataset of IFTTT
apps including filter code [14]. Queries in apps is an emerging
feature and also behind a paywall for users and app publishers,
limiting the number of our benchmarks to what we present.
Yet it is interesting that from the published apps with queries,
we already observe a great variety of data dependencies in
these apps, as represented by the benchmarks.

Out of 35 apps with queries in the dataset, we focus on
the ones including filter code and privacy-sensitive trigger or
query services, such as calendar events [22], list of personal
tasks [23], and user-specific most-watched videos [49], result-
ing in 7 unique apps. Moreover, some insensitive queries like
current weather [52] are used by several different apps in the
dataset. Since data minimization also can significantly improve
performance by not transferring attributes that are not used
by the app execution, we include two privacy-insensitive yet
popular apps in our experiments. Table II reports the trigger,
query, and action services participating in each app.

We have implemented LazyTAP [2], readily deployable
on AWS Lambda, using IFTTT’s environment outlined in
previous work [1]. Our performance evaluation was conducted
on a macOS machine with a 2.4 GHz Quad-Core Intel Core i5
processor and 16 GB RAM.

Table III evaluates the minimization of trigger and query
data attributes for the 15 apps, ranging from the representative
cases to the extracted apps from the dataset. Each row reports
the total number of trigger and query data attributes, the
number of attributes after the static analysis of the extended
minTAP, and the number of fetched attributes by LazyTAP per
possible execution, respectively. The next two columns show
how much data LazyTAP minimized on average over IFTTT
and static minTAP. The last two columns report how many
milliseconds it takes to run the app in our local IFTTT runtime
and for each app execution in LazyTAP. We report the average
elapsed time of 10 runs for each execution path. The reported
latencies include the full execution time, from once the trigger
token is received by the TAP to the point that all action outputs
are populated, on a single machine to abstract away from the
variability of network-related latency. The multiple numbers

reported for LazyTAP (attributes and execution time) reflect all
possible execution paths of the app. IFTTT apps are typically
small snippets without complex constructs, thus we ensure full
path coverage in our evaluation using synthetic data. Since the
execution time for different paths of an app in IFTTT does not
change noticeably, we report the average of all measured times.
Dynamic minTAP is not present in the table due to the lack
of support for apps with queries.
Table IV in Appendix F summarizes the description of the

benchmarks by indicating the sensitivity of services, depen-
dency relationships, and code patterns. For each app, it shows
which services are sensitive, whether queries are dependent
on trigger/query data or entirely independent, whether the
skip commands depend on trigger/query data or time, and
which data is present in the default values of action services,
respectively. The last column specifies if the app has some
unique features, such as nondeterministic query results, query
chaining, or time-sensitive computation.

B. Dependency patterns (representative apps)
To answer RQ1 we investigate the advantage of LazyTAP

runtime concerning minimization. We explain how a variety of
representative apps with different types of dependency patterns
and code structures execute under LazyTAP.
Inspired by an official app [25], app A connects Email to

Slack. Depending on the sender of the incoming email (the
attribute From), the Slack object gets different values; thus
From is always accessed. If the sender is the supervisor, the
Slack post requires three more attributes of Email, thus this
path requires four attributes. If the email is a newsletter, the
Slack post only obtains the email’s timestamp, accessing two
attributes in total for this path. Otherwise, the app skips the
action entirely, touching only one attribute. IFTTT asks for all
the seven Email attributes, no matter if they are necessary. The
over-approximating analysis of static minTAP returns all of the
five attributes visible in the source code. LazyTAP, however,
only fetches the demanded attributes per execution. Dynamic
minTAP, which is only applicable for this representative app
without queries, refuses to send any trigger data for the
skipping execution to the TAP.
App B is the motivating example in Section II-B and a

modified instance of an IFTTT connection [29]. At a specific
time of the day, the user’s important calendar events happening
in office are posted to Slack. The inputs to the sensitive query
are constant values. The execution branches on the Where
property of the first element of the query result. While IFTTT
reads all the trigger attributes and the whole query array, static
minTAP stipulates that the three present attributes in the code
are needed. LazyTAP precisely fetches the accessed attributes
for each execution and no more: one if the condition holds
and three otherwise.
App C is a combination of the first two apps, including

Email as another sensitive source of information. The query is
whether a meeting with the email sender is in today’s schedule.
If not, the app skips; otherwise, the Slack message should
contain the attributes Subject, Body, and From of Email, the
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App Id Trigger Queries Actions
A Email.sendIftttAnEmail - Slack.postToChannel
B DateAndTime.everyWeekdayAt GoogleCalendar.historyOfEventFromSearchStarts Slack.postToChannel
C Email.sendIftttAnEmail GoogleCalendar.historyOfEventFromSearchStarts Slack.postToChannel
D DateAndTime.everyWeekdayAt Youtube.recentLikedVideos Telegram.sendMessage

E Smartlife.doorClosed GoogleCalendar.historyOfCalendarEventBeginnings
Yelp.searchBusiness

AndroidDevice.startNavigation

F Email.sendIftttAnEmail GoogleCalendar.historyOfEventFromSearchStarts
Fitbit.historyOfDailyActivitySummaries

Slack.postToChannel
Gmail.sendAnEmail

G DateAndTime.everyWeekdayAt Trakt.mostWatchedMovies Twitter.postNewTweet
H Location.enterRegionLocation GoogleCalendar.searchEvents WemoSwitch.attributeSocketOnDiscrete

I Bouncie.fuelEcon Finance.historyOfClosingPrices Moretrees.plantTreeForSelf
IfNotifications.sendNotification

J Smartthings.switchedOnSmartthings Trakt.recommendedMovies IfNotifications.sendRichNotification

K DateAndTime.everyWeekdayAt Trakt.recommendedMovies
Yelp.searchBusiness

Email.sendMeEmail

L DateAndTime.everyWeekdayAt GoogleTasks.listAllTasks Slack.postToChannel
M GoogleCalendar.newEventAdded Giphy.historyOfRandomGifBasedOnKeyword Slack.postToChannel

N DateAndTime.everyDayAt Weather.twoDayForecast GoogleCalendar.quickAddEvent
IfNotifications.sendRichNotification

O Space.spaceStationOverheadSoonNasa Weather.currentWeather IfNotifications.sendNotification

Table II: LazyTAP benchmark services.

title of the first meeting, and the length of the calendar query.
IFTTT always has access to the whole array of calendar events
while static minTAP restricts the TAP’s access to all of the
five attributes. For the skipping execution, however, LazyTAP
fetches only From and length.
App D is one of the apps with nondeterministic query

results, similar to the motivating example in Section II-C.
The app randomly suggests one of the recently liked YouTube
videos of the user and posts it to Telegram. If there is no video
(length is zero), the action is skipped. Otherwise, a random
index is picked and the Telegram message concatenates Title,
Url, and Description of the selected video. As the behavior of
the app depends on a random value generated in the execution,
static minTAP cannot foresee the index and returns the whole
query array restricting each element to the three attributes
(3*YT in Table I). In this case, LazyTAP outperforms static
minTAP by far due to fetching only the four attributes with
their actual values.

LazyTAP treats trigger and query services in a similar vein,
allowing any kind of dependency between the trigger and
the query services. App E, the example in Section II-D, is
an illustrative app showing LazyTAP is able to handle apps
with queries that can depend on each other, creating query
chains, beyond what is possible with IFTTT or minTAP. The
input to Yelp is the location from the calendar event, the first
sensitive query. If there is no upcoming calendar event, the
second query should not be performed at all. There are three
different execution paths for this app: the action is skipped if
there is no meeting (accessing length of GoogleCalendar),
or when no parking area is close to the meeting’s venue
(also accessing Where of the first calendar event and Yelp’s
length); otherwise the parking location is being sent to the
navigator device (also accessing BusinessAddress of Yelp’s
first element). Static minTAP marks all of the four attributes

as necessary while LazyTAP only fetches the attributes of each
execution path. IFTTT does not support query chaining.
A combination of app C and an existing IFTTT app [24]

produces F, another genuine IFTTT app, where two query
and two action services are involved. If the email is from
the supervisor, the app notifies the user on Slack if there
is a supervision meeting in the calendar. If user’s personal
trainer has sent an email, the app retrieves some attributes of
Fitbit’s daily activity and auto-replies by sending the collected
information. If the email’s sender is neither of the two, both
actions are skipped. Although Fitbit does not ask for the
email’s sender as a query input, performing each of the queries
implicitly depends on the trigger data. In lieu of transferring
all the trigger data and both query arrays to the TAP, static
minTAP aggregates all of the ten attributes in both branches.
Again, the on-demand approach of LazyTAP brings accuracy
by minimizing the data attributes per execution: six for the
first branch and five for the second one.

C. Dataset analysis (apps with queries)
To answer RQ2 we study the IFTTT apps with filter code

from the dataset [14] that include queries.
App G [39] slices the query array of user’s most-watched

movies up to ten elements and iterates over the subarray to
tweet MovieTitle and MovieYear of each movie. With the
assumption of applying a static analyzer that understands how
array slicing works, static minTAP can imaginably predict
which attributes of every element of the subarray are used.
LazyTAP, on the other hand, has access to values in the execu-
tion, including length, assuring precision in data minimization
by execution.
App H is one of the apps introduced in IFTTT’s documenta-

tion [26]. The action is to heat up a location if the user arrives
there on the same day, according to the calendar. The two
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App
Id

Attributes Execution Time (ms)

Total (IFTTT) Static minTAP LazyTAP Over
IFTTT(%)

Over
minTAP(%)

IFTTT LazyTAP

A 7 5 1, 2, 4 66.7 53.3 9 127, 232, 438
B 3 + (7 * GC) 3 1, 3 99.4 33.3 130 234, 438
C 8 + (7 * GC) 5 2, 5 99.0 30.0 129 339, 650
D 3 + (5 * YT) 1 + (3 * YT) 1, 4 99.6 33.3 131 235, 552
E 4 + (7 * GC) + (7 * YL) 4 1, 3, 4 99.6 65.0 N/A 237, 544, 649
F 9 + (7 * GC) + (12 * FI) 10 1, 2, 5, 6 99.0 96.7 236 129, 340, 654, 752
G 3 + (5 * TK) 1 + min(TK, 10) * 2 1 + min(TK, 10) * 2 92.6 0.0 132 233, 443, 652, ..., 2431
H 4 + (10 * GC) 2 2 99.6 0.0 133 336
I 4 + (5 * FN) 4 3 98.8 25.0 130 443
J 3 + (7 * TK) 1 + TK 1, 2, 3, 4 99.3 90.4 132 231, 335, 442, 550
K 4 + (7 * TK) + (7 * YL) 3 + TK + YL 4 99.4 92.5 234 650
L 3 + (7 * GT) 1 + (3 * GT) 1, ..., 1 + (3 * GT) 78.5 0.0 135 233, 335, 445, 548, ..., 15286
M 9 + (6 * GP) 4 2, 4 99.0 25.0 132 233, 544
N 2 + (16 * WL) 4 4 99.5 0.0 131 549
O 6 + (20 * WL) 5 3, 5 99.6 20.0 130 446, 651

Table III: LazyTAP benchmark evaluation. Number of attributes includes length of query arrays. Abbreviations: Google-
CalendarLength (GC), YoutubeLength (YT), YelpLength (YL), FitbitLength (FI), TraktLength (TK), FinanceLength (FN),
GoogleTasksLength (GT), GiphyLength (GP), WeatherLength (WL).

attributes OccurredAt and searchEvents[0].Start are always
accessed in all executions, thus static minTAP and LazyTAP
minimize the same number of attributes.

App I [36] uses regex and parseFloat methods on the
FuelEcon and Price attributes. Source code analysis of
minTAP shows the default value of the action object needs two
more attributes whereas the action object is always overwritten
and only one more attribute is accessed.

Apps J [37], simplified in Section II-C, randomly recom-
mends three movies based on the user’s preferences, which
can be potentially repeated. Similarly, App K [40] suggests
a random movie and a random restaurant, influenced by
user’s data. Akin to app D, static minTAP fails at accurately
minimizing apps with nondeterministic query attributes and
returns all movie titles (and restaurant names for app K).
LazyTAP executes the app and fetches the randomly picked
index of the queries, preserving the app’s behavior including
possibly duplicate values for app J.
App L [28] iterates over user’s personal tasks, posting Title

and Note of each if the Due date is today. Depending on the
due dates, which cannot be predictable for a static analyzer,
LazyTAP outperforms static minTAP with a smaller or larger
margin. Only when the due date of all tasks is today, the
number of attributes in LazyTAP and static minTAP coincides.
The filter code of App M [31] depends only on the sensitive

trigger data, meaning that performing the query is unnecessary
if the action is skipped. LazyTAP communicates with the
query service only if needed, saving two attributes more than
static minTAP for the skipped executions.
The last two apps, N [26] and O [30], exemplify how much

redundant data is being sent to IFTTT for some insensitive
queries like weather. Each element of the query array contains
more than 16 attributes while less than five are actually
accessed by the app, showing that LazyTAP uses network
bandwidth efficiently thanks to on-demand data minimization.

D. Minimization
To answer RQ3 we measure how much LazyTAP on average

improves data minimization over IFTTT and static minTAP.
Table III includes two columns to report how much data
on average has been minimized using LazyTAP compared to
IFTTT and static minTAP. LazyTAP has multiple numbers
of fetched attributes with respect to the path taken by the
app execution. To compute the accurate weighted average of
the overall time overhead, the statistical distribution of paths
taken should be given. Because of missing this information,
we simply consider the average of the reported numbers for
a given app under LazyTAP. To calculate the percentage of
improvement in terms of data minimization, the parametric
numbers of the attributes in the table for IFTTT and static
minTAP should also be quantified. Due to the lack of statistical
information on the length of query results for the various
services in question, we assign an average value for the size
of query arrays. The default maximum limit for any query
response is 50 events [34]; thus, we replace the query length
variables with 25 to have an unbiased average value. Note that
we assume IFTTT only has access to the most recent trigger
event, unlike the real-world setup where trigger services are
expected to send the 50 most recent events [34], regardless
of whether or not they have already been sent. According
to the calculated numbers for our benchmarks in the two
columns, LazyTAP does not fetch 95% of users’ data otherwise
transferred to IFTTT and improves minimization by 38% over
minTAP.

E. Performance
To answer RQ4 we discuss the time and cost overhead of

LazyTAP versus IFTTT. The reported numbers in Table III
indicate that the number of query services has a direct impact
on IFTTT’s execution time for an app, in our local deployment.
In all cases except for four cases, the execution time is
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approximately 130ms, because of one trigger and one query
service in the apps. Apps F and K consume more time in
IFTTT because of the additional query service. App A has no
queries, computing the action object immediately.

According to the numbers for executions under LazyTAP,
the time overhead correlates with the number of fetched
attributes. For example, fetching four attributes in an app takes
between 438ms to 650ms, varying based on the data size. Our
benchmark shows on average 150ms and no longer than 250ms
spent to fetch an attribute. The worst case is an execution of
app L that takes 15 seconds to fetch 151 unique attributes,
which is well within 15 minutes of IFTTT’s guarantee to poll
the trigger service [42]. The optimization techniques men-
tioned in Section III-B enhance the performance of LazyTAP
even further.

Note that the connections to the shim services can be
kept alive during the app execution, meaning that even if
the number of requests grows, the number of connections
remains only one per service. In a pricing model of serverless
deployments charging per request, however, the cost might
increase. It would be onerous to estimate the cost impact in a
general setting because both factors of the volume of requests
and computation time matter.

VI. RELATED WORK

Recent surveys [9], [11], [3], [13] overview the state-of-the-
art on the security and privacy of TAPs.
Privacy on TAPs. Previous work shows that overprivileged
access to trigger/action APIs [20] opens up for harvesting
private information [53] and enables malicious rule makers to
exploit TAP’s privileges [10], [1]. Privacy-sensitive endpoints
on IFTTT available via triggers and queries include various
personal data, including location and health data [41]. This
raises privacy concerns tackled by our work.

DTAP [20] focuses on the integrity of apps under a mali-
cious TAP [20]. DTAP relies on extending the OAuth protocol
with so-called XTokens to express fine-grained privileges and
requires a trusted client to configure the apps. In contrast,
LazyTAP addresses data privacy. OTAP [16] achieves data
privacy with respect to TAPs by encryption and padding
techniques. This approach can protect data in transit, but it
does not allow computing on the data by TAPs (by, e.g., filter
code), a key feature of TAPs. In contrast, LazyTAP focuses
on data minimization and offers fully-fledged support for filter
code on the TAP. LazyTAP can be extended with encryption
of attributes in the style of OTAP.

eTAP [15] also targets privacy with respect to a malicious
TAP, and, in contrast to OTAP, supports computation on the
TAP. This is achieved by garbled circuits for app execution.
While it provides strong confidentiality and integrity guaran-
tees, it only supports a limited subset of features in filter code
and incurs higher overhead.

Filter-and-Fuzz [53] explores how events from a smart home
can be sanitized to ensure that IFTTT does not learn more
information than necessary. It relies on textual analysis to
identify unnecessary events. LazyTAP can benefit from hiding

statistical patterns of sensitive events by composing them with
the Fuzzing part of Filter-and-Fuzz.
minTAP [14] is subject to detailed comparisons throughout

the paper, summarized in Table I. Compared to minTAP’s
focus on helping trigger services to sanitize their data before
is passed to a potentially ill-intended TAP, LazyTAP helps
the TAP itself to obtain fine-grained data minimization by
on-demand computation and the benefits it entails in terms
of support for queries and nondeterminism. Since minTAP
and LazyTAP use IFTTT as a starting point for experimen-
tation, their prototypes inherit some of IFTTT’s elements
of architecture. At a conceptual level, however, LazyTAP’s
design is different from minTAP because of pull-on-demand
computations via lazy proxy objects to load necessary remote
data behind the scenes. Architecturally, LazyTAP’s prototype
requires the integration of the proxying into IFTTT’s runtime,
whereas minTAP requires a separate trusted client.
Secure hardware. Recent efforts leverage secure hardware
for protecting users’ data from TAPs. Hardware-based trusted
execution environments (TEEs) enable computing over the
trigger data on the TAP while preserving confidentiality [55],
[47]. Besides requiring hardware changes to the TAP back-
ends, current TEEs suffer from fundamental security design
issues [50], [44], [12].
App security studies. This line of work analyzes the seman-
tics of trigger-action rules to determine conflicts or security
policy violations (e.g., a door opens when it should not) [48],
[17], [51], [3]. While important, this work is orthogonal to
LazyTAP as it deals with the semantics of rule sets, rather
than the data privacy issues that arise from the fundamental
design shortcomings of TAPs.
Language-based data minimization and minimum expo-
sure. Data minimization is a principle restricting data col-
lection to “what is necessary in relation to the purposes for
which they are processed” [21]. Antignac et al. [8] formalize
the notions of monolithic and distributed data minimization.
Pinisetty et al. [46] utilize testing techniques for data mini-
mization, but leave synthesizing minimizers as future work.
Compared to this line of work, we develop practical data
minimization techniques that focus on the attributes used by
programs.
Anciaux et al. [5], [7], [6] focus on the case of collecting

forms (like tax forms) for governments. They consider the
number of inputs to withhold for the privacy of the applicants
and discuss data-dependent minimum exposure. However, the
computational model is that of assertions on particular shapes
of formulas that represent form collection logic, making their
algorithmic solutions less applicable to scenarios of general
programs. By contrast, our approach naturally extends the
language-based approach to data minimization, which applies
to arbitrary (runs of) programs.

VII. CONCLUSION

We have presented LazyTAP, a fine-grained on-demand
paradigm for trigger-action applications that warrants input-
sensitive data minimization by design. In contrast to the
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previous approaches, LazyTAP supports both multiple trig-
gers/queries and nondeterministic/randomized behaviors of the
apps. We leverage laziness and proxy objects to develop a
novel architecture for on-demand computation for third-party
JavaScript apps, loading necessary remote data behind the
scenes. This achieves full backward compatibility for app
developers. We formally establish the correctness of LazyTAP
and its minimization properties with respect to both IFTTT
and minTAP. We implement and evaluate LazyTAP on app
benchmarks showing that on average LazyTAP improves min-
imization by 95% over IFTTT and by 38% over minTAP, while
incurring a tolerable performance overhead.
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APPENDIX A: TRANSFORMATION OF RUNTIME

Figure 9 exemplifies how IFTTT’s runtime is transformed
into LazyTAP. The process proceeds as follows:
Step 1. Replace triggerData, the data existing in the body of
the trigger service communication, with the remote object es-
tablishing the connection to the lazy service of the trigger; i.e.,
RemoteObject.Create(new LazyService(triggerUrl)) (Line
2-3).
Step 2. For each query service, replace the object
queryService(queryUrl, queryInput) with the
remote object establishing the connection to the lazy
service of the query; i.e., RemoteArray.Create(new
LazyService(queryUrl, () => queryInput)) (Line 6-7).
Step 3. For each action service, for each action field
field_i, thunk the value by prepending () => to the value
defaultValue_i (Line 11-12).
Step 4. Omit assigning the default values to the action
fields before the filter code by removing the Object.assign
invocations for each action service (Line 14).
Step 5. For each action service, include the postapp code
snippet that strictifies and assigns the default values to the
action fields only if they have not been set in the filter code.

APPENDIX B: ENCODING OF METHODS AND ARRAYS

Methods can be encoded by using an object to carry the
arguments and an object the method is invoked on as follows.
1 // compilation of method call o.f(a)
2 x := { }
3 x["this"] := o
4 x[0] := a;
5 f(x)

Arrays can be encoded as number indexed objects with
a special length property. From a modeling perspective, it
is assumed any methods impacting array’s size modify the
length property accordingly.
1 // compilation of arrays x = [a_0, ... , a_n]
2 x = { }
3 x[0] = a_0
4 ...
5 x[n] = a_n
6 x["length"] = n + 1

APPENDIX C: LAZY-TO-STRICT COMPILATION

1 compileL2S (Exp e) =
2 case () ⇐⇒ e : e
3 case Q(k, e) : Q(k, compileL2S(e))
4 default : e

1 compileL2S (Cmd c) =
2 case i := e : i := compileL2S(e)
3 case c1; c2 : compileL2S(c1); compileL2S(c2)
4 default : c

APPENDIX D: SEMANTIC RULES

The strict evaluation rules for expressions are found in
Figure 10, and the strict execution rules for statements are
found in Figure 11. The lazy evaluation is introduced in
Figure 12, the lazy execution is presented in Figure 13, and
the supporting relations are found in Figure 14.

APPENDIX E: CORRECTNESS

Figure 15 presents the rules for the equivalence relation.

Lemma 1 (Preservation of equivalence of statements). Exe-
cution maintains equivalence. Formally,

∀c, c′, �1,Γ ,E1,R1,H1,Γ,E1,H1,E2,R2,H2,E2,H2.
(Γ ,E1,R1,H1) ≃�1 (Γ,E1,H1) ∧

Γ |= (c,E1,R1,H1)→l (E2,R2,H2) ∧
c′ = compileL2S(c) ∧

Γ |= (c′,E1,H1)→s (E2,H2) ⇐⇒

∃�2. �1 ⊆ �2 ∧ (Γ ,E2,R2,H2) ≃�2 (Γ,E2,H2).

Proof. By induction over the height of execution tree using
preservation of equivalence of expressions.

Lemma 2 (Simulation of statements). The strict semantics
executes successfully if and only if the lazy semantics executes
successfully. Formally,

∀c, c′, �1,Γ ,E1,R1,H1,Γ,E1,H1.
(Γ ,E1,R1,H1) ≃�1 (Γ,E1,H1) ∧

c′ = compileL2S(c)

⇐⇒
(

(

∀E2,R2,H2, .Γ |= (c,E1,R1,H1)→l (E2,R2,H2) ⇐⇒

∃E2,H2.Γ |= (c′,E1,H1)→s (E2,H2)
)

∧
(

∀E2,H2.Γ |= (c′,E1,H1)→s (E2,H2) ⇐⇒

∃E2,R2,H2.Γ |= (c,E1,R1,H1)→l (E2,R2,H2)
)

)

.

Proof. By induction over the height of execution tree. The
proof is standard and makes use of preservation of equiva-
lence of statements and expressions as well as the proof of
simulation of expressions.

APPENDIX F: LAZYTAP BENCHMARK

Table IV describes the dependency patterns of the apps in
the benchmark.
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1 var TriggerService = {
2 - triggerName: triggerData
3 + triggerName: RemoteObject.Create(new LazyService(triggerUrl))
4 }
5 var QueryService = {
6 - queryName: queryService(queryUrl, queryInput)
7 + queryName: RemoteArray.Create(new LazyService(queryUrl, () ⇐⇒ queryInput))
8 }
9 var ActionService = { actionName: { skipped: false } }
10 var actionDefaultValues = { ActionService: { actionName: {
11 - field_i: defaultValue_i
12 + field_i: () ⇐⇒ defaultValue_i
13 } } }
14 - Object.assign(ActionService.actionName, actionDefaultValues["ActionService"]["actionName"])
15 ActionService.actionName.setField_i = function(value) { if (!this.skipped) this.field_i = value }
16 ActionService.actionName.skip = function() { this.skipped = true }
17 //end of app configuration
18 filterCode
19 + if (!ActionService.actionName.skipped) {
20 + var actionfields = actionDefaultValues["ActionService"]["actionName"]
21 + for (const field in actionfields) {
22 + if (!ActionService.actionName.hasOwnProperty(field)) {
23 + ActionService.actionName[field] = actionfields[field]() //strictify the thunk value
24 + } } }
25 return ActionService

Figure 9: IFTTT-to-LazyTAP transformation of runtime.

Category App
Id

Sensitive
Services

Query
Depending
On

Skip
Based
On

Preset
Action
Values

Other Features

A T - T T -
B Q I - - -
C T, Q T Q - -
D Q I Q - Nondeterministic query results (Math.random)
E T, Q1, Q2 Q1: I, Q2: Q1 Q1, Q2 Q2 Query chain; Conditional second query

Representative
apps

F T, Q1, Q2 Q1: T, Q2: T T, Q1, Q2 A1: -, A2: T Queries on trigger-dependent branches; Two actions
G Q I - Q Array slice; forEach loop
H T, Q I T, Q - Date object from moment
I T I - T String methods using regex and parseFloat; Two actions
J T, Q I M - Nondeterministic query results (Math.random); currentUserTime
K Q1 Q1: I, Q2: I - T Nondeterministic query results (Math.random)
L Q I Q Q currentUserTime and moment object; forEach loop
M T I T T, Q String methods using regex; forEach loop
N - I - A1: -, A2: - String methods; Two actions

Apps
from
dataset

O - I Q, M T currentUserTime; String methods

Table IV: LazyTAP benchmark description of dependency patterns and app structures. T: Trigger, Q: Query, I: Independent;
M: Time (moment.js). The app with id E is not a genuine IFTTT app due to the lack of support for query chaining.

Γ |= (pv,E,H) ⇓s (pv,H)
sevVal

E(x) = sv
Γ |= (x,E,H) ⇓s (sv,H)

sevVar
Γ |= (e1,E,H1) ⇓s (pv1,H2) Γ |= (e2,E,H2) ⇓s (pv2,H3)

Γ |= (e1 ⊕ e2,E,H1) ⇓s (pv1 ⊕ pv2,H3)
sevOPlus

Γ |= (e,E,H1) ⇓s (sv1,H2)
apply (f , sv1,H2) = (sv2,H3)
Γ |= (f (e),E,H1) ⇓s (sv2,H3)

sevCall

Γ |= (e1,E,H1) ⇓s (r,H2)
Γ |= (e2,E,H2) ⇓s (p,H3) H3(r) = o o(p) = sv

Γ |= (e1[e2],E,H1) ⇓s (sv,H3)
sevPrj

r ∉ dom(H1)
H2 = H1[r → {}]

Γ |= ({},E,H1) ⇓s (r,H2)
sevNew

⟨t, q, a⟩ |= (T ,E,H) ⇓s (t,H)
sevTrigger

⟨t, q, a⟩ |= (e,E,H1) ⇓s (sv,H2)
q(k, encJSON(sv)) = j decJSON(j,H2) = (r,H3)

⟨t, q, a⟩ |= (Q(k, e),E,H1) ⇓s (r,H3)
sevQuery

a(m) = r
⟨t, q, a⟩ |= (A(m),E,H) ⇓s (r,H)

sevAction

Figure 10: Strict evaluation.
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Γ |= (skip,E,H)→s (E,H)
seSkip

Γ |= (e,E1,H1) ⇓s (sv,H2)
E2 = E1[x → sv]

Γ |= (x ∶= e,E1,H1)→s (E2,H2)
seAsn

Γ |= (c1,E1,H1)→n
s (E2,H2)

Γ |= (c2,E2,H2)→n′
s (E3,H3)

Γ |= (c1; c2,E1,H1)→n+n′+1
s (E3,H3)

seSeq

Γ |= (i,E,H1) ⇓s (r,H2) Γ |= (e1,E,H2) ⇓s (p,H3)
Γ |= (e2,E,H3) ⇓s (sv,H4) H2(r) = o1 o2 = o1[p → sv] H5 = H4[r → o2]

Γ |= (i[e1] ∶= e2,E,H1)→s (E,H5)
seAsnPrj

Γ |= (e,E1,H1) ⇓s (b,H2)
Γ |= (cbool,E1,H2)→n

s (E2,H3)

Γ |= (if e then ctrue else cfalse,E1,H1)→n+1
s (E2,H3)

seIf
Γ |= (e,E,H1) ⇓s (false,H2)

Γ |= (while e do c,E,H1)→s (E,H2)
seWhile-false

Γ |= (e,E1,H1) ⇓s (true,H2) Γ |= (c;while e do c,E1,H2)→n
s (E2,H3)

Γ |= (while e do c,E1,H1)→n+1
s (E2,H3)

seWhile-true

Figure 11: Strict execution.

Γ |= (pv,E ,R ,H) ⇓l (pv,R ,H)
levVal

E (x) = lv
Γ |= (x,E ,R ,H) ⇓l (lv,R ,H)

levVar
r ∉ dom(H1) H2 = H1[r → {}]

Γ |= ({},E ,R ,H1) ⇓l (r,R ,H2)
levNew

Γ |= (e1,E ,R1,H1) ⇓l (pv1,R2,H2)
Γ |= (e2,E ,R2,H2) ⇓l (pv2,R3,H3)

Γ |= (e1 ⊕ e2,E ,R1,H1) ⇓l (pv1 ⊕ pv2,R3,H3)
levOPlus

Γ |= (e,E ,R1,H1) ⇓l (rv1,R2,H2)
apply (f , rv1,R2,H2) = (rv2,R3,H3)
Γ |= (f (e),E ,R1,H1) ⇓l (rv2,R3,H3)

levFCall

Γ |= (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ |= (e2,E ,R2,H2) ⇓l (p,R3,H3)

H3(r) = o o(p) = rv
Γ |= (e1[e2],E ,R1,H1) ⇓l (rv,R3,H3)

levPrjLocal

Γ |= (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ |= (e2,E ,R2,H2) ⇓l (p,R3,H3)

RProject(Γ , r, p,E ,R3,H3) = (rv,R4,H4)
Γ |= (e1[e2],E ,R1,H1) ⇓l (rv,R4,H4)

levPrjRemote

⟨t , q, a⟩ |= (T ,E ,R ,H) ⇓l (t ,R ,H)
levTrigger

Γ |= (e,E ,R1,H1) ⇓l (lv,R2,H2) dom(r) ∉ R2 dom(r) ∉ H2 R3 = R2[r → (k, lv)] H3 = H2[r → {}]
⟨t , q, a⟩ |= (Q(k, e),E ,R1,H1) ⇓l (r,R3,H3)

levLQuery

a(m) = r
⟨t , q, a⟩ |= (A(m),E ,R ,H) ⇓l (r,R ,H)

levAction
Γ |= (()⇒ e,E ,R ,H) ⇓l (thunk(e),R ,H)

levThunk

Figure 12: Lazy evaluation.

Γ |= (skip,E ,R ,H)→l (E ,R ,H)
leSkip

Γ |= (e,E1,R1,H1) ⇓l (lv,R2,H2) E2 = E1[x → lv]
Γ |= (x ∶= e,E1,R1,H1)→l (E2,R2,H2)

leAsn

Γ |= (i,E ,R1,H1) ⇓l (r,R2,H2) Γ |= (e1,E ,R2,H2) ⇓l (p,R3,H3)
Γ |= (e2,E ,R3,H3) ⇓l (rv,R4,H4) H2(r) = o1 o2 = o1[p → rv]

H5 = H4[r → o2]
Γ |= (i[e1] ∶= e2,E ,R1,H1)→l (E ,R4,H5)

leAsnPrj

Γ |= (e,E1,R1,H1) ⇓l (bool,R2,H2)
Γ |= (cbool,E1,R2,H2)→n

l (E2,R3,H3)

Γ |= (if e then ctrue else cfalse,E1,R1,H1)→n+1
l (E2,R3,H3)

leIf

Γ |= (e,E1,R1,H1) ⇓l (true,R2,H2)
Γ |= (c;while e do c,E1,R2,H2)→n

l (E2,R3,H3)

Γ |= (while e do c,E1,R1,H1)→n+1
l (E2,R3,H3)

leWhile-true
Γ |= (e,E ,R1,H1) ⇓l (false,R2,H2)

Γ |= (while e do c,E ,R1,H1)→l (E ,R2,H2)
leWhile-false

Γ |= (c1,E1,R1,H1)→n
l (E2,R2,H2) Γ |= (c2,E2,R2,H2)→n′

l (E3,R3,H3)

Γ |= (c1; c2,E1,R1,H1)→n+n′+1
l (E3,R3,H3)

leSeq

Figure 13: Lazy execution.
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fF (b.p) = j decJSON(j) = pv
F = (b, fF )

FetchDecode(F , p,R ,H) = (pv,R ,H)
fetchValue

fF (b.p) = j decJSON(j) = unit r ∉ dom(H1) r ∉ dom(R1)
H2 = H1[r → {}] R2 = R1[r → (b.p, fF )] F1 = (b, fF ) F2 = (b.p, fF )

FetchDecode(F1, p,R1,H1) = (r,R2,H2)
fetchObject

H(r) = o o(p) = rv
RProject(Γ , r, p,E ,R ,H) = (rv,R ,H)

Cache

R1(r) = F H1(r) = o1 p ∉ dom(o1)
FetchDecode(F , p,R1,H1) = (rv,R2,H2) o2 = o1[p → rv] H3 = H2[r → o2]

RProject(Γ , r, p,E ,R1,H1) = (rv,R2,H3)
Fetch

R1(r) = (k, lv)
⟨t , q, a⟩ |= (lv,E ,R1,H1) ↓s (rv,R2,H2) q(k, encJSON(rv)) = F R3 = R2[r → F ] Rproject(⟨t , q, a⟩, r, p,E ,R3,H2) = (rv,R4,H3)

RProject(⟨t , q, a⟩, r, p,E ,R1,H1) = (rv,R4,H3)
Query

Γ |= (rv,E ,R ,H) ↓s (rv,R ,H)
RVal

Γ |= (e,E ,R1,H1) ⇓l (rv,R2,H2)
Γ |= (()⇒ e,E ,R1,H1) ↓s (rv,R2,H2)

Thunk

Figure 14: FetchDecode, RProject, Strictify.

Γ ,E ,R ,H,Γ,E,H |= pv ≃� pv
modelPrim

(r1, r2) ∈ �
Γ ,E ,R ,H,Γ,E,H |= r1 ≃� r2

modelRef

R(r1) = F ((r1,F ), r2) ∈ �
Γ ,E ,R ,H,Γ,E,H |= r1 ≃� r2

modelRemote

R(r1) = (k, lv)
⟨t , q, a⟩ |= (lv,E ,R1,H1) ↓s (rv,R2,H2)

q(k, encJSON(rv)) = F ((r1,F ), r2) ∈ �
⟨t , q, a⟩,E ,R1,H1,Γ,E,H |= r1 ≃� r2

modelLQuery

∀lv,R2,H2.Γ |= (e,E ,R1,H1) ⇓l (lv,R2,H2) ⇐⇒ ∃�2.
(

�1 ⊆ �2 ∧ (Γ ,E ,R2,H2) ≃�2 (Γ,E,H2) ∧ Γ ,E ,R2,H2,Γ,E,H2 |= lv ≃�2 sv
)

Γ ,E ,R1,H1,Γ,E,H2 |= thunk(e) ≃�1 sv
modelLThunk

Γ ,E ,R ,H,Γ,E,H |= pv ≃F
� pv

modelFetcherPrim
H(r) = o Γ ,E ,R ,H,Γ,E,H |= ({},F ) ≃� o

Γ ,E ,R ,H,Γ,E,H |= unit ≃F
� r

modelFetcherObject

dom(o) = dom(o)
(

∀p.o(p) = rv ∧ o(p) = sv ⇐⇒ Γ ,E ,R ,H,Γ,E,H |= rv ≃� sv
)

Γ ,E ,R ,H,Γ,E,H |=o ≃� o
objectModels

∀p. p ∈ dom(o) ⇐⇒ p ∈ dom(o)
∀p. (b.p) ∈ dom(fF ) ⇐⇒ p ∈ dom(o)

(

∀p.o(p) = rv ∧ o(p) = sv ⇐⇒ Γ ,E ,R ,H,Γ,E,H |= rv ≃� sv
)

(

∀p. o(p) = sv ∧ fF (b.p) = j ∧ decJSON(j) = pv ⇐⇒ Γ ,E ,R ,H,Γ,E,H |= pv ≃((b.p),fF )
� sv

)

Γ ,E ,R ,H,Γ,E,H |= (o, (b, fF )) ≃� o
remoteModels

dom(E ) = dom(E)
(

∀x.E (x) = lv ∧ E(x) = sv ⇐⇒
Γ ,E ,R ,H,Γ,E,H |= lv ≃� sv

)

Γ ,R ,H,Γ,H |=E ≃� E
modelVarEnv

∀r1, r2. (r1, r2) ∈ � ⇐⇒ r1 ∈ dom(H) ∧ r2 ∈ dom(H)
∀r1, r2,F . ((r1,F ), r2) ∈ � ⇐⇒ r1 ∈ dom(H) ∧ r2 ∈ dom(H)

(

∀r1, r2. (r1, r2) ∈ � ∧H(r1) = o ∧ H(r2) = o ⇐⇒ Γ ,E ,R ,H,Γ,E,H |=o ≃� o
)

(

((r1,F ), r2) ∈ � ∧H(r1) = o ∧ H(r2) = o ⇐⇒ Γ ,E ,R ,H,Γ,E,H |= (o,F ) ≃� o
)

Γ ,E ,R ,Γ,E |=H ≃� H
modelHeap

dom(a) = dom(a)
(

∀m. a(m) = r1 ∧ a(m) = r2 ⇐⇒
⟨t , q, a⟩,E ,R ,H, ⟨t, q, a⟩,E,H |= r1 ≃� r2

)

⟨t , q, a⟩,E ,R ,H, ⟨t, q, a⟩,E,H |= a ≃� a
modelAction

⟨t , q, a⟩,E ,R ,H, ⟨t, q, a⟩,E,H |= t ≃� t
⟨t , q, a⟩,R ,H, ⟨t, q, a⟩,H |=E ≃� E
⟨t , q, a⟩,E ,R , ⟨t, q, a⟩,E |=H ≃� H

⟨t , q, a⟩,E ,R ,H, ⟨t, q, a⟩,E,H |= a ≃� a

(⟨t , q, a⟩,E ,R ,H) ≃� (⟨t, q, a⟩,E,H)
modelEnv

(

∀�1, t , a,E ,R1,H1, t, a,E,H1, lv, sv, k, r1.
(

(⟨t , q, a⟩,E ,R1,H1) ≃�1 (⟨t, q, a⟩,E,H1) ∧ ⟨t , q, a⟩,E ,R1,H1, ⟨t, q, a⟩,E,H1 |= lv ≃�1 sv∧
r1 ∉ dom(R1) ∧ r1 ∉ dom(H1) ∧H2 = H1[r1 → {}] ∧ R2 = R1[r1 → (k, lv)] ∧ q(k, encJSON(sv)) = j ∧ decJSON(j,H1) = (r2,H2)

)

⇐⇒ ∃�2.
(

�1 ⊆ �2 ∧ (⟨t , q, a⟩,E ,R2,H2) ≃�2 (⟨t, q, a⟩,E,H2) ∧ ⟨t , q, a⟩,E ,R2,H2, ⟨t, q, a⟩,E,H2 |= r1 ≃�2 r2
)

)

q ≃ q
modelQueries

Figure 15: Strict-lazy equivalence of environments.

3052


