
• Minimization wrt willing-to-minimize TAP

• Pull-on-demand approach
Pulling attributes of trigger and query data
Data source unification

• Input-sensitive and fine-grained
TAP: lazy runtime supporting fetch-on-access
Trigger/query services: shim layers support caching

• Seamless for app developers
Using the same trigger and query APIs
Supporting nondeterminism and query chains

• GDPR: “Only necessary data should be collected
for the specific purpose the user consented”

• minTAP [USENIX’22]: Preprocessing approach
Minimization wrt ill-intended TAP
Only trigger attributes
Two modes: Static and Dynamic
Trusted clients required

• Connecting otherwise unconnected devices and services
• UponTrigger event, the app performs an Action
• Queries: additional data source,

 allowing for complex apps
• Accessing user’s private data

 such as calendar events,
watched movies,
and locations

• Core language: While language with objects

• Modeling remote objects, lazy query, and deferred computation

LazyTAP: On-Demand Data Minimization
for Trigger-Action Applications

LazyTAP: On-Demand Data Minimization for
Trigger-Action Applications

Mohammad M. Ahmadpanah*, Daniel Hedin*, †, and Andrei Sabelfeld*

*Chalmers University of Technology
†Mälardalen University

Abstract—Trigger-Action Platforms (TAPs) empower appli-

cations (apps) for connecting otherwise unconnected devices

and services. The current TAPs like IFTTT require trigger

services to push excessive amounts of sensitive data to the TAP

regardless of whether the data will be used in the app, at odds

with the principle of data minimization. Furthermore, the rich

features of modern TAPs, including IFTTT queries to support

multiple trigger services and nondeterminism of apps, have been

out of the reach of previous data minimization approaches

like minTAP. This paper proposes LazyTAP, a new paradigm

for fine-grained on-demand data minimization. LazyTAP breaks

away from the traditional push-all approach of coarse-grained

data over-approximation. Instead, LazyTAP pulls input data

on-demand, once it is accessed by the app execution. Thanks

to the fine granularity, LazyTAP enables tight minimization

that naturally generalizes to support multiple trigger services

via queries and is robust with respect to nondeterministic

behavior of the apps. We achieve seamlessness for third-party

app developers by leveraging laziness to defer computation and

proxy objects to load necessary remote data behind the scenes

as it becomes needed. We formally establish the correctness of

LazyTAP and its minimization properties with respect to both

IFTTT and minTAP. We implement and evaluate LazyTAP on

app benchmarks showing that on average LazyTAP improves

minimization by 95% over IFTTT and by 38% over minTAP,

while incurring a tolerable performance overhead.

I. INTRODUCTION

Trigger-Action Platforms (TAPs) like IFTTT (“If This Then
That”) [33], Zapier [54], and Microsoft Power Automate [43]
excel at connecting otherwise unconnected devices and ser-
vices. Consider services that manage users’ data like Google
Calendar for calendar appointments and Trakt for keeping
track of TV shows and movies watched. TAPs enable popular
automation applications (or apps) like “Every morning at 7am,
send a Slack message with the first meeting of the day from
Google Calendar” [29] (app B among our running examples)
or “When you turn your Samsung TV on after 5pm on Sat-
urdays, pick one of the personalized movie recommendations
from Trakt” [37] (app J among our running examples). In
these examples, the TAP gets the initial app inputs from trigger
services (Time and Samsung TV), requests further inputs from
query services (from Google Calendar and Trakt), and sends
the outputs to action services (Slack and Notification).
Privacy concerns. With the convenience and interoperability
of TAPs comes the concern that the TAP is e�ectively a
“person-in-the-middle”, acting on behalf of the user with
respect to trigger and action services. This poses a privacy

challenge since in the event of a compromised TAP, the users’
sensitive input data is also compromised [10], [9], [15], [1],
[14].

The current practices of TAPs like IFTTT inherently rely
on the push-all approach for input data. When a new event
is emitted by the trigger service, all input data attributes are
indiscriminately pushed to the TAP, regardless of whether
the data will be used in the app execution. This coarse-
grained over-approximation is at odds with data minimization,
a principle stipulating to limit the data to “what is necessary
in relation to the purposes for which they are processed” [21].
This important principle is adopted by legal frameworks like
the General Data Protection Regulation (GDPR) [21] and the
California Privacy Rights Act (CPRA) [18].

Data minimization first of all implies minimizing the pos-
sibility of accessing personal data [45]. Next within the
remaining possibilities, the amount of personal data that is
stored should be minimized. Finally, the time of storing
sensitive data should also be minimized. Our work focuses
on the first, most desired type of minimization: data-access
minimization. This privacy goal, in line with previous work
on data minimization on TAPs [14], is appealing because it is
robust with respect to potential data breaches on TAPs. Indeed,
TAPs not always succeed to safeguard user data received from
trigger services [1].

From triggers to queries. The push-all approach exacerbates
the privacy problem in the presence of multiple sources of
input data. IFTTT allows multiple inputs via the mechanism of
queries [35], [38], a recently introduced feature for paid users
to create, publish, and run apps with additional data sources.
Kalantari et al. [41] identify 90 sensitive queries for access
to private data in categories that include health & fitness,
communication, finance & payments, voice assistants, security
& monitoring, cloud storage, photo & video, connected car,
and contacts.

In app B, the trigger service is Time, triggering the app
at 7am every day. However, the sensitive input of the app is
loaded by a query to Google Calendar. Even though the app
needs information about only one meeting, the TAP exces-
sively loads all attributes of all recent meetings. Moreover,
even if the app only asks for a query conditionally on some
input, a TAP like IFTTT will always load the most recent 50
query events [34] regardless of the input and whether the data

Paper appeared in
IEEE S&P 2023

Trigger-Action Platforms (TAPs) LazyTAP by an example

IFTTT: If This Then That Formal modeling

LazyTAP: data minimization by construction LazyTAP takeaways

Data minimization Evaluation

• Over 23M users and 800 services

• Push-all approach
Sending all trigger/query data to TAP
independent of the app code

• Attribute-level overprivilege
Services should send the
50 most recent events
by default

Trigger

Query

Action

(2) token

LazyTAP

if (events[0].Where == 'office')
 Slack.post(events[0].Title);

DayOfWeek
Time

(3) "today"(4) "today"

(5) events[].Title
(5) events[].Where
(5) events[].Starts
(5) events[].Ends
(5) events[].Description
(5) events[].EventURL

(8) [0].Title

(6) token
(7) [0].Where

Trigger

Minimizer

App code

Trigger

Query

Action

TAP

Lazy Strict

Lazy heap extends to a heap isomorphic to strict heap

App Id Distinctive pattern Total attributes (IFTTT) Static minTAP LazyTAP

MeetNotif Sensitive independent query 2 + (6 * CalendarLength) 2 1 | 2

MovieRec Nondeterministic query, skip on time 3 + (7 * TraktLength) TraktLength + 1 1

ParkFinder Conditional query chain, skip on queries
4 + (6 * CalendarLength)
+
(7 * YelpLength)

4 1 | 3 | 4

https://www.cse.chalmers.se/research/group/security/lazytap

Data minimization by construction
- Pulling data attributes on-demand
- Input-sensitive and fine-grained
- Supporting queries and nondeterminism
- Seamless for app developers
- Correctness and precision formally proved
- Benchmarking: 95% over IFTTT, 38% over static minTAP

Lazy runtime by
- Proxied remote objects
- Deferred query preparation and property access
computation by thunking

(1)

(9)

Minimization improved by
95% over IFTTT

38% over static minTAP

App code

Action

minTAP

Theorem: LazyTAP is correct
and at least as precise as

preprocessing minimization

Trigger/Query

Shim

App code

LazyTAP

Action

Example: “Every morning,
post the title of the first
office meeting to Slack”

Shim

Shim

App code

IFTTT

Trigger

DayOfWeek
Time

Action

"today"Query

events[].Title,
events[].Where
events[].Starts
events[].Ends
events[].Description
events[].EventURL

