
Securing Software in the Presence
of Third-Party Modules

Supervisor: Andrei Sabelfeld

Co-supervisor: Daniel Hedin

Examiner: David Sands

Discussion leader: Deian Stefan (UCSD)

October 1, 2021

Mohammad M. Ahmadpanah

Securing Software in the Presence of Third-Party Modules October 1, 2021 2/40

Modular programming

• Code modules

– Designed and implemented independently

– Often written by third parties

– Security concerns such as:

• Stealing confidential information

• Tampering with sensitive data

• Executing malicious code

Securing Software in the Presence of Third-Party Modules October 1, 2021 3/40

Third-party modules: security policies

ACCESS
CONTROL

INFORMATION-FLOW
CONTROL

Securing Software in the Presence of Third-Party Modules October 1, 2021 4/40

Papers at a glance

SandTrap:

Securing JavaScript-driven

Trigger-Action Platforms

1

Nontransitive Policies

Transpiled

3

Securing Node-RED

Applications

2

Language-Based Security

A tool presented

Formal proof

USENIX’21

EuroS&P’21

Joshua Guttman’s Festschrift'21

Access
Control

Securing Software in the Presence of Third-Party Modules October 1, 2021 5/40

Trigger-Action Platform (TAP)

• Connecting otherwise unconnected services/devices

• “Managing users’ digital lives” by connecting

– Devices (smartphones, cars,…)

– Smart homes and healthcare

– Online services (, ,…)

– Social networks (, ,…)

Image: © Irina Strelnikova / Adobe Stock

Securing Software in the Presence of Third-Party Modules October 1, 2021 6/40

TAP: Examples

Securing Software in the Presence of Third-Party Modules October 1, 2021 7/40

Trigger-Action Platform (cont.)

• Person-in-the-middle

• End-user programming

– Users can create and publish apps

– Most apps by third parties

• Popular JavaScript-driven TAPs:

– and (proprietary)

– (open-source)

Do I know
them?

18 million IFTTT users running
more than a billion apps a month
connected to more than 650 partner services

Securing Software in the Presence of Third-Party Modules October 1, 2021 8/40

TAP architecture
Threat model:

Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Zapier and Node-RED:
single-tenant

Securing Software in the Presence of Third-Party Modules October 1, 2021 9/40

TAP architecture (cont.)
Threat model:

Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

IFTTT:
multi-tenant

Securing Software in the Presence of Third-Party Modules October 1, 2021 10/40

Sandboxing apps in IFTTT and Zapier

• JavaScript of the app runs inside AWS Lambda
• Node.js instances run in Amazon’s version of Linux
• AWS Lambda’s built-in sandbox at process level
• IFTTT:

– “Filter code is run in an isolated environment with a short
timeout.”

– Security checks on script code of the app
• TypeScript syntactic typing
• Disallow eval, modules, sensitive APIs, and I/O

AWS
Lambda

function runScriptCode(filterCode, config) {
 … // set trigger and action parameters
 eval(filterCode)
}

Securing Software in the Presence of Third-Party Modules October 1, 2021 11/40

IFTTT sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

User installs benign apps from the app store

Malicious app maker

PWNEDPWNED

PWNED PWNEDPWNED

PWNED

Compromised: Trigger and action data of the benign apps of the other users

Securing Software in the Presence of Third-Party Modules October 1, 2021 12/40

Zapier sandbox breakout

Compromised: Trigger and action data of other apps of the same user
User installs a malicious app that poses as benign in app store

Trigger ActionApp

Trigger ActionApp

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED

Securing Software in the Presence of Third-Party Modules October 1, 2021 13/40

Node-RED architecture

https://blog.techdesign.com/get-started-with-iot-visual-wiring-tool-node-red/

global

context

Flow Flow

Node Node

message

Node-RED

Node
flo

w
context

Node

Node.js

Securing Software in the Presence of Third-Party Modules October 1, 2021 14/40

Node-RED security policy

• Interpret from graphical interface

• Information may only flow w.r.t. the wiring
• No tampering with “Recent Quakes” node by other nodes/flows

• No access to data (e.g. local files) outside the flow

Securing Software in the Presence of Third-Party Modules October 1, 2021 15/40

Node-RED vulnerabilities

global

context

Flow Flow

Node
Malicious

Node

message

Node-RED

Node
flo

w
context

Malicious

Node

module

object

Node.js

Malicious node may:

• Abuse Node.js modules like child_process to run arbitrary code
• Attack the RED object shared by flows

• Read and modify sensitive data
• Benign email node:
 sendopts.to = node.name || msg.to;

• Malicious email node:
 sendopts.to = node.name || msg.to +

 “, me@attacker.com”;

Solution: access control at module and shared object level

Solution: access control at the level of APIs and their values

Security labeling:
• 408 node definitions and 642 flows
• 70.40% of flows may violate privacy
• 76.46% of flows may violate integrity

Securing Software in the Presence of Third-Party Modules October 1, 2021 16/40

Node-RED vulnerabilities (cont.)

Malicious node may:

• Exploit inter-node communication
 global.set("tankLevel", tankLevel);

 …
 var tankLevel = global.get("tankLevel");
 if (tankLevel < 10) pump.stop(); else pump.start();

• Exploiting shared resources
 var require = global.get(’require’);

 …
 var opencv = require(’opencv’);

Solution: access control at the level of context

global

context

Flow Flow

Node Node

message

Node-RED

Malicious

Node

flo

wcontext

Malicious

Node

Node.js

• 19.31% of 1181 flows make use of context

Securing Software in the Presence of Third-Party Modules October 1, 2021 17/40

Node-RED breakout

Trigger ActionApp

Trigger ActionApp

User installs a malicious app that poses as benign in app store

PWNEDPWNED

PWNED PWNED

PWNED

PWNED

Compromised: Trigger and action data of other apps of the same user and the TAP itself

Malicious app maker

Securing Software in the Presence of Third-Party Modules October 1, 2021 18/40

How to secure JavaScript apps on TAPs?

• IFTTT apps should not access APIs other than
– Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime

• IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need access control at module- and context-level

Need fine-grained access control at the level of APIs and their values

• IFTTT apps should not access modules, while Zapier and Node-RED apps must

• Malicious Node-RED apps may abuse child_process to run arbitrary code, or

may tamper with shared objects in the context

Approach: access control by secure sandboxing

Securing Software in the Presence of Third-Party Modules October 1, 2021 19/40

SandTrap: modeling

• Policy examples:
- “only me@user.com is permitted for the email node”

- “only nodes in Water Utility flow can write to the shared variable TankLevel”

• Node configuration (for Node-RED):

 𝑐𝑜𝑛𝑓𝑖𝑔, 𝑤𝑖𝑟𝑒𝑠, 𝑙, 𝑃, 𝑉, 𝑆

API allowlist: 𝑃 ⊆ 𝐴𝑃𝐼𝑠

Permitted values: 𝑉: 𝑃 → 2𝑉𝑎𝑙

Shared access: 𝑆 𝑥 = 𝑅 | 𝑊; 𝑥 ∈ 𝑉𝑎𝑟𝐹𝑙𝑜𝑤 ⊎ 𝑉𝑎𝑟𝐺𝑙𝑜𝑏𝑎𝑙

[presented in Paper 2]

Securing Software in the Presence of Third-Party Modules October 1, 2021 20/40

SandTrap: modeling (cont.)

Malicious node attempting to send an email to attacker:

Water Utility flow: (TankLevel, R) for nodes that may read TankLevel
 (TankLevel, W) for nodes that may write to TankLevel

Securing Software in the Presence of Third-Party Modules October 1, 2021 21/40

SandTrap: modeling (cont.)

• Soundness

- Monitoring at node level enforces global security

• Transparency

- No behavior modification other than raising security error

- The monitor preserves the longest secure prefix of a given trace

SandTrap

node a

node b

node c

node a

node b

node c

SandTrap

node a

node b

node a

node b
x

Securing Software in the Presence of Third-Party Modules October 1, 2021 22/40

• Enforcing
– read, write, call, construct policies

• Secure usage of modules
– vs. isolated-vm and
Secure ECMAScript

• Structural proxy-based
– vs. vm2

– two-sided membranes

– symmetric proxies

• Allowlisting policies at four levels
– module, API, value, context

SandTrap: implementation

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w

Securing Software in the Presence of Third-Party Modules October 1, 2021 23/40

• Policy generation

– Learning mode per execution

• Policy examples
– Module: "manifest": {..., "fs": "fs.json", …}

– API: {…, "call": {"allow": true, "arguments": [{}], "result": {}},…}

– Value: [Parametric value-sensitive]

{…, "call": {"allow": "(thisArg, arg) =>
 {return arg == this.GetPolicyParameter (‘target’);}”,…}

– Context: {…, "sharedObj":{"write": true, "writePolicy": "path/to/sharedObj",
 "read": true, "readPolicy": " path/to/sharedObj "},…}

SandTrap: policies

SandTrap
execution execution

policy

Securing Software in the Presence of Third-Party Modules October 1, 2021 24/40

Baseline vs. advanced policies

• To aid developers, need

– Baseline policies once and for all apps per platform

• Set by platform

• “No module can be required in IFTTT filter code”

– Advanced policies for specific apps

• Set by platform but developers/users may suggest

• “Only use allowlisted URLs or email addresses”

Securing Software in the Presence of Third-Party Modules October 1, 2021 25/40

Baseline policies

• No modules, no APIs other than Trigger/Action

• Read-only moment API

• Read-only protection of Zapier runtime (incl. node-fetch and
StoreClient)

• No modules, allowlisted calls on RED object

Securing Software in the Presence of Third-Party Modules October 1, 2021 26/40

SandTrap benchmarking examples

Platform Use case Policy Granularity Example of Prevented Attacks

Baseline Module/API Prototype poisoning

Tweet a photo from an Instagram post Value Leak/tamper with photo URL

Baseline Module/API Prototype poisoning

Create a watermarked image using Cloudinary Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with
child_process

Water utility control Context Tamper with the tanks and pumps (in
global context)

Securing Software in the Presence of Third-Party Modules October 1, 2021 27/40

SandTrap enters…
• Baseline policy: No modules, no APIs other than Trigger/Action
• Advanced policies: Fine-grained URL policies
• Overhead: <7ms
• Policy LoC (avg): 185

• Baseline policy: Read-only protection of Zapier runtime
• Advanced policies: Fine-grained URL policies
• Overhead: <12ms
• Policy LoC (avg): 260

• Baseline policy: no modules, specified function calls on RED
• Advanced policies: allowlist of module, API, value, and context
• Overhead: <100ms
• Policy LoC (avg): 2650

S

S

S

Securing Software in the Presence of Third-Party Modules October 1, 2021 28/40

SandTrap monitor

– Structural proxy-based monitor
to enforce fine-grained policies
for JavaScript

– Formal framework (for a core
language)
• Soundness and transparency

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP

S

S

S

Try at https://github.com/sandtrap-monitor/sandtrap

Securing Software in the Presence of Third-Party Modules October 1, 2021 29/40

Papers at a glance

SandTrap:

Securing JavaScript-driven

Trigger-Action Platforms

1

Nontransitive Policies

Transpiled

3

Securing Node-RED

Applications

2

Language-Based Security

A tool presented

Formal proof

USENIX’21

EuroS&P’21

Joshua Guttman’s Festschrift'21

Information
Flow

Control

Access
Control

Securing Software in the Presence of Third-Party Modules October 1, 2021 30/40

Nontransitive Noninterference (NTNI)

A ⊵ B
B ⊵ C

Alice

data;

main(){

 Bob.good();

 Bob.receive(data);

 Bob.bad();

}

Bob

data1;

data2;

good(){Charlie.receive(data2)}

receive(x){data1 = x;}

bad(){Charlie.receive(data1)}

Charlie

data;

receive(x){data = x;}

[Paper 3]

Securing Software in the Presence of Third-Party Modules October 1, 2021 31/40

Nontransitive types

Alice.data A

Bob.data1 B

Bob.data2 B

Charlie.data C

C Charlie.data = Bob.data2 {B}
B Bob.data1 = Alice.data {A}
C Charlie.data = Bob.data1 {A,B}

A ⊵ B
B ⊵ C

specified inferred

𝑐𝑎𝑛𝐹𝑙𝑜𝑤𝑇𝑜 𝑙 = 𝑙′ 𝑙′ ⊵ 𝑙}

{𝐵} ⊆ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐶 = {𝐵, 𝐶}

{𝐴} ⊆ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐵 = {𝐴, 𝐵}

{𝐴, 𝐵} ⊈ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐶 = {𝐵, 𝐶}

Securing Software in the Presence of Third-Party Modules October 1, 2021 32/40

NTNI reduces to TNI

• Standard (transitive) information flow machinery can enforce
nontransitive noninterference

• Two steps:

– Program transformation

– Lattice encoding

• The core idea: don’t drop the lattice assumption

use power lattice in the transformed program
and keep using TNI

Securing Software in the Presence of Third-Party Modules October 1, 2021 33/40

Program transformation: running example

in
it

The transformed program is semantically equivalent to the original
(modulo renaming and having temp and final variables)

fi
n

al

1) replace vars with internal temp vars
2) prepend init assignments (source vars)
3) append final assignments (sink vars)

Securing Software in the Presence of Third-Party Modules October 1, 2021 34/40

Lattice encoding: powerset lattice

{}

{C}{B}{A}

{B,C}{A,C}{A,B}

{A,B,C}

A ⊵ B
B ⊵ C

Asource Bsource
CSource

Asink

Bsink Csink

𝑙𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑙

𝑙𝑠𝑖𝑛𝑘 = 𝑐𝑎𝑛𝐹𝑙𝑜𝑤𝑇𝑜 𝑙 = 𝑙′ 𝑙′ ⊵ 𝑙}

Securing Software in the Presence of Third-Party Modules October 1, 2021 35/40

NTNI to TNI

What’s next?

Securing Software in the Presence of Third-Party Modules October 1, 2021 36/40

Nontransitive types to flow-sensitive types

• For the small calculus:

– Flow-sensitive type system of [Hunt & Sands, POPL’06] is strictly more permissive
than the specialized type system of [Lu & Zhang, CSF’20]

• For Java:

– Case studies using JOANA information flow analyzer [Hammer & Snelting, 2020]

Securing Software in the Presence of Third-Party Modules October 1, 2021 37/40

JOANA-based analysis

JOANA

Illegal flow from
Alice.data_source to
Charlie.data_sink,
visible for BC

the powerset lattice

labeling

run the flow-sensitive analysis

Securing Software in the Presence of Third-Party Modules October 1, 2021 38/40

NTNI-to-TNI takeaways

• Inspired by Lu & Zhang work on nontransitive noninterference

• Our paper shows NTNI can be reduced to TNI, thus

– reuse of the existing info flow machinery to enforce nontransitive policies

• Paper details: https://www.cse.chalmers.se/research/group/security/ntni

Securing Software in the Presence of Third-Party Modules October 1, 2021 39/40

Included papers

USENIX’21

EuroS&P’21

Joshua Guttman’s Festschrift'21

1

2

3

Access
Control

Information
Flow

Control

Securing Software in the Presence of Third-Party Modules October 1, 2021 40/40

Time for Discussion

https://research.chalmers.se/en/publication/525880
https://smahmadpanah.github.io

Securing Software in the Presence of Third-Party Modules October 1, 2021 41/40

Securing Software in the Presence of Third-Party Modules October 1, 2021 42/40

TAPs in comparison

Securing Software in the Presence of Third-Party Modules October 1, 2021 43/40

IFTTT breakout explained

• Prototype poisoning of
rapid.prototype.nextInvocation
in AWS Lambda runtime
• Store trigger incoming data

• IFTTT’s response
• vm2 isolation

• Yet lacking fine-grained policies

• Evade security checks
• Enable require via type declaration

• Enable dynamic code evaluation
• Manipulate function constructor

• Pass require as parameter

• Use network capabilities of the app via
Email.sendMeEmail.setBody()

Securing Software in the Presence of Third-Party Modules October 1, 2021 44/40

SandTrap implementation

r, wObject.prototype

Host SandTrap

Object.prototype

myPrototype

._proto_
._proto_._proto_myPrototype

myFunction

r, w

.prototype.prototypemyFunction

.prototype

x, c

Securing Software in the Presence of Third-Party Modules October 1, 2021 45/40

The world before SandTrap

Breakouts of the sandbox over filtercode
(acknolwedged as critical with bounty and patched by vm2)

Breakouts of the sandbox over zaps (Zapier apps)
(acknolwedged with bounty)

Breakouts lead to exfiltrating data and taking over the platform
(performed an empirical study and a security labeling)

Securing Software in the Presence of Third-Party Modules October 1, 2021 46/40

SandTrap vs. related work

Securing Software in the Presence of Third-Party Modules October 1, 2021 47/40

Nontransitive policies vs. tradition

Dave Charlie

Bob

Alice

Nontransitive ≠ Intransitive
(confinement) (declassification)

Securing Software in the Presence of Third-Party Modules October 1, 2021 48/40

Programs with I/O

• Same lattice encoding: powerset lattice

• Straightforward program transformation

– input(x,𝑙) ↦ input(x, 𝒍𝒔𝒐𝒖𝒓𝒄𝒆) = input(x,{𝒍})

– output(x,𝑙) ↦ output(x, 𝒍𝒔𝒊𝒏𝒌) = output(x,𝒄𝒂𝒏𝑭𝒍𝒐𝒘𝑻𝒐 𝒍)

• Similar reduction result for progress-insensitive notion of NTNI and TNI

• Similar flow-sensitive type system as the enforcement mechanism

Securing Software in the Presence of Third-Party Modules October 1, 2021 49/40

Alternatives to powerset lattice
A ⊵ B
B ⊵ C

Source-sink lattice
(via Dedekind-MacNeille
completion algorithm)

Minimal lattice

	intro
	Slide 1: Securing Software in the Presence of Third-Party Modules
	Slide 2: Modular programming
	Slide 3: Third-party modules: security policies
	Slide 4: Papers at a glance

	SandTrap
	Slide 5: Trigger-Action Platform (TAP)
	Slide 6: TAP: Examples
	Slide 7: Trigger-Action Platform (cont.)
	Slide 8: TAP architecture
	Slide 9: TAP architecture (cont.)
	Slide 10: Sandboxing apps in IFTTT and Zapier
	Slide 11: IFTTT sandbox breakout
	Slide 12: Zapier sandbox breakout
	Slide 13: Node-RED architecture
	Slide 14: Node-RED security policy
	Slide 15: Node-RED vulnerabilities
	Slide 16: Node-RED vulnerabilities (cont.)
	Slide 17: Node-RED breakout
	Slide 18: How to secure JavaScript apps on TAPs?
	Slide 19: SandTrap: modeling
	Slide 20: SandTrap: modeling (cont.)
	Slide 21: SandTrap: modeling (cont.)
	Slide 22: SandTrap: implementation
	Slide 23: SandTrap: policies
	Slide 24: Baseline vs. advanced policies
	Slide 25: Baseline policies
	Slide 26: SandTrap benchmarking examples
	Slide 27: SandTrap enters…
	Slide 28: SandTrap monitor

	NTNI
	Slide 29: Papers at a glance
	Slide 30: Nontransitive Noninterference (NTNI)
	Slide 31: Nontransitive types
	Slide 32: NTNI reduces to TNI
	Slide 33: Program transformation: running example
	Slide 34: Lattice encoding: powerset lattice
	Slide 35: NTNI to TNI
	Slide 36: Nontransitive types to flow-sensitive types
	Slide 37: JOANA-based analysis
	Slide 38: NTNI-to-TNI takeaways

	conclusion
	Slide 39: Included papers
	Slide 40: Time for Discussion
	Slide 41

	backup
	Slide 42: TAPs in comparison
	Slide 43: IFTTT breakout explained
	Slide 44: SandTrap implementation
	Slide 45: The world before SandTrap
	Slide 46: SandTrap vs. related work
	Slide 47: Nontransitive policies vs. tradition
	Slide 48: Programs with I/O
	Slide 49: Alternatives to powerset lattice

