
Securing Node-RED Applications 1

A Proofs

To prove the soundness theorem, we show that each execution step of a node
under the monitor generates secure events.

Lemma 1. Let Nk = 〈config ,wires, l ,P ,V ,S 〉k be a node. Any semantic step
of Nk under the monitor produces a secure trace with regard to 〈Pk ,Vk ,Sk 〉, i.e.,

∀Nk . configk
Tk−→M config ′k ⇒ secure(Tk).

Proof. First we show that any trace produced from the expression evaluation
rules is secure. By induction on the derivation 〈e,Mk〉 ⇓M v :

- The rule (Value) generates an empty (secure) trace.
- The rule (ReadM) only generates the event Rk(x ) if it meets the security

condition for reading a variable, i.e., secure(Rk(x ), 〈Pk ,Vk ,Sk 〉).
- In the rule (CallM), by the induction hypothesis, 〈e,Mk〉 ⇓Tk

M v ⇒
secure(Tk ). Then, the trace Tk.fk(v) is generated if the API call and the
value of the expression e obeys the security condition for API calls, i.e.,
secure(fk(v), 〈Pk ,Vk ,Sk 〉). Therefore, secure(Tk )∧secure(fk(v), 〈Pk ,Vk ,Sk 〉)⇒
secure(Tk .fk(v), 〈Pk ,Vk ,Sk 〉).

Next, by induction on the derivation configk
Tk−→M config ′k, we prove the

lemma:
- Rules (Input), (Skip), and (Seq-2) generate empty traces, which are triv-

ially secure.
- Rules (If), (While-T), (While-F) and (Output) generate the same trace

resulting from the expression evaluation 〈e,Mk〉 ⇓Tk

M v ⇒ secure(Tk ), because of
the proof above.

- The trace Tk generated in Rule (Seq-1) is secure, based on the induction
hypothesis.

- The rule (WriteM) emits a secure trace since
〈e,Mk〉 ⇓Tk

M v ⇒ secure(Tk ), and secure(Tk ) ∧ secure(Wk(x ), 〈Pk ,Vk ,Sk 〉) ⇒
secure(Tk .Wk(x ), 〈Pk ,Vk ,Sk 〉). Because any trace generated by the rules of
expression evaluation 〈e,Mk〉 ⇓M v is secure, and the write event is produced
only if it complies with the security condition for writing into a variable, i.e.,
secure(Wk(x ), 〈Pk ,Vk ,Sk 〉).

We have proved the node-level security as a corollary of Lemma 1. Hence,
the generated trace from a transition between any two node configurations is
secure. Next, we prove that any trace generated by a flow execution under the
monitor is secure.

Lemma 2. Any semantic step of a flow Fl under the monitor produces a secure

trace, ∀Fl ,F
′
l . Fl

TF−−→M F ′l ⇒ secure(TF).

Proof. By case analysis on the flow semantics rules:
- The rules (Init) and (Term) yield empty (secure) traces, which are trivially

secure.



2 M.M. Ahmadpanah et al.

- The rules (Step) and (Send) repeat the same trace generated from the
corresponding transition between node configurations. Lemma 1 demonstrates

that ∀Nk . configk
Tk−−→M config ′k ⇒ secure(Tk ). Thus, the theorem also holds for

these cases.

Lemma 3. Let G be a global configuration. Any semantic step of G under the

monitor is secure, ∀G ,G ′. G
TG−−→M G ′ ⇒ secure(TG).

Proof. The single rule in the global semantics replicates the trace produced
by the transition between the two flow configurations. Lemma 2 shows flow
transitions are secure under the monitor, thus the global transitions. Because(
∀G ,G ′. G

TG−−→M G ′ ⇒ secure(TG)
)
⇔
(
∀Fl ,F

′
l . Fl

TF−−→M F ′l ⇒ secure(TF )
)
.

Proof (Theorem 1). By using the lemma 3 and multiple repetitions of the single
rule of the global semantics, the soundness theorem is proven as a corollary.

To prove the transparency theorem, we show that the monitor preserves the
secure events emitted from a node.

Lemma 4. Any semantic step in the original execution of a node that emits a

secure trace remains the same in the monitor semantics, ∀Nk ,N
′
k .confk

Tk−−→ conf ′k

∧ secure(Tk )⇒ confk
Tk−−→M conf ′k .

Proof. By induction on 〈e,Mk〉 ⇓ v , we observe that there is a one-to-
one mapping from the rules for ⇓ and ⇓M if the security conditions
secure(Rk(x ), 〈Pk ,Vk ,Sk 〉) and secure(fk(v), 〈Pk ,Vk ,Sk 〉) hold.

By induction on the derivation confk
Tk−−→ conf ′k , again we can see a one-to-one

correspondence between the rules for −→ and −→M, as a result of the induction
on 〈e,Mk〉 ⇓ v , and the comparison between the rule (Write) in the standard
semantics and the rule (WriteM) in the monitor semantics, which requires
secure(Wk(x ), 〈Pk ,Vk ,Sk 〉) to be held.

We assume utilizing a deterministic order-preserving scheduler that both
the original semantics and the monitor employ. The non-deterministic scheduler
might affect the order of events generated by the global and flow transitions.

Lemma 5. Any semantic step of the global configuration that generates a se-

cure trace remains the same in the monitor semantics, ∀G ,G ′. G
Tk−−→ G ′ ∧

secure(Tk )⇒ G
Tk−−→M G ′.

Proof. The standard and the monitor semantics use the same global and flow
semantics. With the assumption of employing an identical deterministic sched-

uler and using lemma 4, we can write ∀G ,G ′. G
Tk−−→ G ′ ∧ secure(Tk ) ⇒

∃!Fl , Nk, F ′l , N ′k . Fl ∈ Flows(G) ∧ Nk ∈ Nodes(Fl) ∧ F ′l ∈ Flows(G ′) ∧
N ′k ∈ Nodes(F ′l ) ∧ confk

Tk−−→M conf ′k . Similarly, the statement holds for
Tk−−→M

in the other way.



Securing Node-RED Applications 3

Proof (Theorem 2). Starting with the initial configuration (G0,Vinit) and using
the global semantics, there are two cases:

- Case 1 (the trace is secure): If secure(T ), using the lemma 5 for n-times
results T = T ′ ∧ n = m.

- Case 2 (the trace is not secure): If T = Tpre .Ti .Tpost where
secure(Tpre) ∧ ¬secure(Ti), then using the lemma 5 for i times concludes
T ′ = Tpre ∧ i = m. Thereafter, no semantic rule applies for the transition

Gi
Tpre−−→i Gi+1 in the monitor semantics.


