

A Proofs

To prove the soundness theorem, we show that each execution step of a node under the monitor generates secure events.

Lemma 1. *Let $N_k = \langle \text{config}, \text{wires}, l, P, V, S \rangle_k$ be a node. Any semantic step of N_k under the monitor produces a secure trace with regard to $\langle P_k, V_k, S_k \rangle$, i.e., $\forall N_k. \text{config}_k \xrightarrow{T_k} \mathcal{M} \text{config}'_k \Rightarrow \text{secure}(T_k)$.*

Proof. First we show that any trace produced from the expression evaluation rules is secure. By induction on the derivation $\langle e, M_k \rangle \Downarrow_{\mathcal{M}} v$:

- The rule (VALUE) generates an empty (secure) trace.
- The rule (READ $_{\mathcal{M}}$) only generates the event $R_k(x)$ if it meets the security condition for reading a variable, i.e., $\text{secure}(R_k(x), \langle P_k, V_k, S_k \rangle)$.
- In the rule (CALL $_{\mathcal{M}}$), by the induction hypothesis, $\langle e, M_k \rangle \Downarrow_{\mathcal{M}}^{T_k} v \Rightarrow \text{secure}(T_k)$. Then, the trace $T_k.f_k(v)$ is generated if the API call and the value of the expression e obeys the security condition for API calls, i.e., $\text{secure}(f_k(v), \langle P_k, V_k, S_k \rangle)$. Therefore, $\text{secure}(T_k) \wedge \text{secure}(f_k(v), \langle P_k, V_k, S_k \rangle) \Rightarrow \text{secure}(T_k.f_k(v), \langle P_k, V_k, S_k \rangle)$.

Next, by induction on the derivation $\text{config}_k \xrightarrow{T_k} \mathcal{M} \text{config}'_k$, we prove the lemma:

- Rules (INPUT), (SKIP), and (SEQ-2) generate empty traces, which are trivially secure.
- Rules (IF), (WHILE-T), (WHILE-F) and (OUTPUT) generate the same trace resulting from the expression evaluation $\langle e, M_k \rangle \Downarrow_{\mathcal{M}}^{T_k} v \Rightarrow \text{secure}(T_k)$, because of the proof above.
- The trace T_k generated in Rule (SEQ-1) is secure, based on the induction hypothesis.
 - The rule (WRITE $_{\mathcal{M}}$) emits a secure trace since $\langle e, M_k \rangle \Downarrow_{\mathcal{M}}^{T_k} v \Rightarrow \text{secure}(T_k)$, and $\text{secure}(T_k) \wedge \text{secure}(W_k(x), \langle P_k, V_k, S_k \rangle) \Rightarrow \text{secure}(T_k.W_k(x), \langle P_k, V_k, S_k \rangle)$. Because any trace generated by the rules of expression evaluation $\langle e, M_k \rangle \Downarrow_{\mathcal{M}} v$ is secure, and the write event is produced only if it complies with the security condition for writing into a variable, i.e., $\text{secure}(W_k(x), \langle P_k, V_k, S_k \rangle)$.

We have proved the node-level security as a corollary of Lemma 1. Hence, the generated trace from a transition between any two node configurations is secure. Next, we prove that any trace generated by a flow execution under the monitor is secure.

Lemma 2. *Any semantic step of a flow F_l under the monitor produces a secure trace, $\forall F_l, F'_l. F_l \xrightarrow{T_F} \mathcal{M} F'_l \Rightarrow \text{secure}(T_F)$.*

Proof. By case analysis on the flow semantics rules:

- The rules (INIT) and (TERM) yield empty (secure) traces, which are trivially secure.

- The rules (STEP) and (SEND) repeat the same trace generated from the corresponding transition between node configurations. Lemma 1 demonstrates that $\forall N_k. config_k \xrightarrow{T_k} \mathcal{M} config'_k \Rightarrow secure(T_k)$. Thus, the theorem also holds for these cases.

Lemma 3. *Let G be a global configuration. Any semantic step of G under the monitor is secure, $\forall G, G'. G \xrightarrow{T_G} \mathcal{M} G' \Rightarrow secure(T_G)$.*

Proof. The single rule in the global semantics replicates the trace produced by the transition between the two flow configurations. Lemma 2 shows flow transitions are secure under the monitor, thus the global transitions. Because $(\forall G, G'. G \xrightarrow{T_G} \mathcal{M} G' \Rightarrow secure(T_G)) \Leftrightarrow (\forall F_l, F'_l. F_l \xrightarrow{T_F} \mathcal{M} F'_l \Rightarrow secure(T_F))$.

Proof (Theorem 1). By using the lemma 3 and multiple repetitions of the single rule of the global semantics, the soundness theorem is proven as a corollary.

To prove the transparency theorem, we show that the monitor preserves the secure events emitted from a node.

Lemma 4. *Any semantic step in the original execution of a node that emits a secure trace remains the same in the monitor semantics, $\forall N_k, N'_k. config_k \xrightarrow{T_k} config'_k \wedge secure(T_k) \Rightarrow config_k \xrightarrow{T_k} \mathcal{M} config'_k$.*

Proof. By induction on $\langle e, M_k \rangle \Downarrow v$, we observe that there is a one-to-one mapping from the rules for \Downarrow and $\Downarrow_{\mathcal{M}}$ if the security conditions $secure(R_k(x), \langle P_k, V_k, S_k \rangle)$ and $secure(f_k(v), \langle P_k, V_k, S_k \rangle)$ hold.

By induction on the derivation $config_k \xrightarrow{T_k} config'_k$, again we can see a one-to-one correspondence between the rules for \rightarrow and $\rightarrow_{\mathcal{M}}$, as a result of the induction on $\langle e, M_k \rangle \Downarrow v$, and the comparison between the rule (WRITE) in the standard semantics and the rule (WRITE $_{\mathcal{M}}$) in the monitor semantics, which requires $secure(W_k(x), \langle P_k, V_k, S_k \rangle)$ to be held.

We assume utilizing a deterministic order-preserving scheduler that both the original semantics and the monitor employ. The non-deterministic scheduler might affect the order of events generated by the global and flow transitions.

Lemma 5. *Any semantic step of the global configuration that generates a secure trace remains the same in the monitor semantics, $\forall G, G'. G \xrightarrow{T_k} G' \wedge secure(T_k) \Rightarrow G \xrightarrow{T_k} \mathcal{M} G'$.*

Proof. The standard and the monitor semantics use the same global and flow semantics. With the assumption of employing an identical deterministic scheduler and using lemma 4, we can write $\forall G, G'. G \xrightarrow{T_k} G' \wedge secure(T_k) \Rightarrow \exists! F_l, N_k, F'_l, N'_k. F_l \in Flows(G) \wedge N_k \in Nodes(F_l) \wedge F'_l \in Flows(G') \wedge N'_k \in Nodes(F'_l) \wedge config_k \xrightarrow{T_k} \mathcal{M} config'_k$. Similarly, the statement holds for $\xrightarrow{T_k} \mathcal{M}$ in the other way.

Proof (Theorem 2). Starting with the initial configuration (G_0, V_{init}) and using the global semantics, there are two cases:

- Case 1 (the trace is secure): If $secure(T)$, using the lemma 5 for n -times results $T = T' \wedge n = m$.
- Case 2 (the trace is not secure): If $T = T_{pre} \cdot T_i \cdot T_{post}$ where $secure(T_{pre}) \wedge \neg secure(T_i)$, then using the lemma 5 for i times concludes $T' = T_{pre} \wedge i = m$. Thereafter, no semantic rule applies for the transition $G_i \xrightarrow{T_{pre}}^i G_{i+1}$ in the monitor semantics.