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فهرست

مقدمه
خط مشی امنیتی عدم تداخل و اِعمال آن
 زبانWLو گراف وابستگی برنامه
الگوریتم بازنویسی برنامه
پیاده سازی و ایجاد رابط کاربری
آزمون نرم افزار
جمع بندی و کارهای آینده
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مقدمه

 [1]زبان مبناامنیت
تحلیل ایستا◦

وارسی مدل، تفسیر انتزاعینوع مبناحلیل جریان داده، تحلیل ت ،

تحلیل پویا◦
نظارت اجرا

تعریف مسئله
اعمال یک نیازمندی امنیتی به کد مبدأ برنامه◦
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خط مشی امنیتی عدم تداخل 

خط مشی امنیتی
عدم تداخل◦

:بر اساس وضعیت پیشرفت برنامهدسته بندی◦
حساس به پیشرفت
به پیشرفتغیرحساس
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مروری بر کارهای گذشته

 [2]نوع سامانهارائه یک
کارهای اولیه
محافظه کارانه

[6]یستا یک روش تبدیل برنامه، ترکیبی از تحلیل پویا و ا
 برنامه هاعدم توجه به رفتار خاتمه
 ضمنی بدون انتسابجریان هایعدم تشخیص

 [7]درون برنامه ایامنیتی پویای ناظرهایچارچوبی برای
 طراحی یک ماشین به کمک رخدادهای انتزاعی زمان اجرا و

[8]ویرایش اجرا توسط اطلاعات ایستا 
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اِعمال عدم تداخل

 ه حساس بتداخلِهیچ روش کاملاً پویایی برای اعمال عدم
[9. ]جریان وجود ندارد

 تداخل را برآورده که عدم برنامه هاییمسئله تشخیص
:می کنند

[2. ]نیستتصمیم پذیر◦
 ایستا قابل اعمال نیستروش هایتوسط.

[10. ]بازگشتی نیستشمارش پذیرمکمل ◦
 اجرا قابل اعمال نیستناظرهایتوسط.

 [1]روش بازنویسی برنامه
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WLزبان 
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program ::= program ; clist

clist ::= c | clist ; c

exp ::= b | n | x | exp == exp | exp < exp | exp <= exp | exp >= exp | exp > exp

| exp + exp | exp - exp | exp or exp | exp and exp | ! exp

c ::= NOP | x = exp | inL varlist | inH varlist | outL x | outH x | outL BOT

| outH BOT

| if exp then clist endif | if exp then clist else clist endif | while exp do 

clist done

varlist ::= x | x , varlist

b ::= true | false | TRUE | FALSE

n ::= integer_number

x ::= identifier

WLنحو زبان –1شکل 



گراف وابستگی برنامه

 سطح بالا به ورودی هایاطلاعات از جریان هایتشخیص
سطح پایینخروجی های

 جهت دارگراف
برنامهعبارت هاییا گزاره ها: گره ها◦
[11]داده ایکنترلی یا وابستگی های: یال ها◦

انواع وابستگی
کنترلی◦
داده ای◦
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و گراف وابستگی برنامه آن WLبه زبان برنامه ای–2شکل 

program;
inL l1, l2;
inH h1;
if l1 == 0 then

l2 = h1
else 

NOP
endif;
outL l2



گراف وابستگی برنامه
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[15]نمودار کلی نحوه تولید گراف وابستگی برنامه از روی کد مبدأ برنامه –3شکل 



گراف جریان کنترل

بلوک پایه
تولید در هنگام تشکیل درخت تجزیه
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[16]نحوه تولید گراف جریان کنترل –4شکل 



پس غلبه

 پس غلبهمرزهای
.می شوندمنجرالفگرهبهکهانشعابینقاطنزدیک ترین◦

کنترلیوابستگی

گراف وابستگی کنترلی
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داده ایگراف وابستگی 

داده ایوابستگی
شدهمقداردهیآندرمتغیرآنکهگزاره اینزدیک ترینفقط◦

.داشتخواهدراوابستگیاست،
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گراف وابستگی برنامه

 داده ایترکیب گراف وابستگی کنترلی و
خط ساده: یال وابستگی کنترلی◦
خط چین: داده اییال وابستگی ◦
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program;
inL l1, l2;
inH h1;
if l1 == 0 then

l2 = h1
else 

NOP
endif;
outL l2

و گراف وابستگی برنامه آن WLبه زبان برنامه ای–2شکل 



الگوریتم بازنویسی برنامه
الگوریتم کلی◦

 تابعaffect
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foreach statement X producing a high input event hin do

foreach statement Y producing a low observable 

event eL do

if 𝑌 ∈ 𝑎𝑓𝑓𝑒𝑐𝑡(𝑋) then

transform Y into Yˊ such that 

𝑌′ ∉ 𝑎𝑓𝑓𝑒𝑐𝑡(𝑋) in the new program

end

end

end

[5]الگوریتم کلی بازنویسی برای اعمال خط مشی عدم تداخل –7شکل 



تبازنویسی برای حالت غیر حساس به پیشرف

𝑖𝑛𝐻 ℎ ⤳ outL l
سطح بالا ورودی هایمتأثر از outL lجایگزین کردن دستورات ◦

NOPیا outL با دستورات 

مسیرشرط هایاستفاده از ◦
 تعریف شرط مسیر
 مسیرگره هایاجرای شرط هایعطفیحاصل ترکیب

تعریف شرط اجرای گره

جریان صریح و ضمنی◦
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تبازنویسی برای حالت غیر حساس به پیشرف

1394مهر 25
سید محمدمهدی احمدپناه

46از 17

RWPINI (M, G):

Initialize 𝐹 to the set of all paths 𝑆𝑡𝑎𝑟𝑡 ↪ 𝑃 ⤳ 𝑃ˊ in the PDG G of M where P is the node 

representing a high input and 𝑃ˊ is the node representing outL l for some l;

if 𝐹 = ∅ then

return M; 

end

create a copy of M, name it Mˊ, and change it as follows:

determine the type of flow indicated by each path 𝑓 ∈ 𝐹;

foreach 𝑓 ∈ 𝐹 do:

Generate the path condition of 𝑓 as the conjunction of the execution conditions of node

N satisfying 𝑓 = 𝑆𝑡𝑎𝑟𝑡 ⤳ X ՜
𝑑
𝑁 ⤳ 𝑃ˊ if there are such nodes on the path and true 

otherwise;

end

foreach node n on G representing outL l for some l do

let c be the disjunction of the path conditions of all 𝑓ˊ ∈ 𝐹 which terminate at n;

if all paths 𝑓ˊ ∈ 𝐹 terminating at n indicate an explicit flow then

replace outL l with the statement “if c then outL  else outL l endif”;

else

replace outL l with the statement “if c then NOP else outL l endif”;

end

end

return Mˊ;

[5]الگوریتم بازنویسی عدم تداخل حالت غیر حساس به پیشرفت –8شکل 



تبازنویسی برای حالت حساس به پیشرف
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وضعیت پیشرفت برنامه
خاتمه◦
واگرایی◦

 ساختارWhile در زبانWL

وابسته به مقدار سطح بالاحلقه هایتحلیل  ◦
 ،تصمیم ناپذیردر حالت کلیprogram;

inH h1;
inL l1;
while h1 < l1 do

NOP;
h1 = h1 - l1

done;
outL l1

Loop Analysis “h1 >= l1 or l1 < 0”



تبازنویسی برای حالت حساس به پیشرف
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RWPSNI(M, G):

Initialize D to the set of all paths 𝑆𝑡𝑎𝑟𝑡 ↪ 𝑃 ↪ 𝐸+ in G where 𝐸+ is a path terminating at a loop guard and 

P is the node representing a high input;

Mˊ = RWPINI(M, G);

if 𝐷 = ∅ then

return Mˊ;

end

H = max {height(n) | n is a node on G}, where height is a function that returns the height of a given node on 

the tree obtained by removing data dependence edges from G;

Change Mˊ as follows:

for h = H to 1 do

foreach node n with height(n) = h representing a loop on some path 𝑓 ∈ 𝐷 do

r = LoopAnalyzer(loop(n));

if r = False then 

if 𝑋՜
𝑐
𝑛 appears on at least one path 𝑓 ∈ 𝐷 do

replace loop(n) with the statement “if guard(n) then body(n) endif”;

end

else

if r ≠ True then

replace loop(n) with the statement “if r then loop(n) endif”;

end

end

end

h = h – 1;

end

return Mˊ;
[5]الگوریتم بازنویسی عدم تداخل حالت حساس به پیشرفت –9شکل 



بازنویسی برنامهالگوریتم های
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شدهاثباتاستفادهموردالگوریتم هایشفافیتوصحت
[5].است

ردبازنویسیازپسبرنامه،معناشناختتغییرامکان
پیشرفتبهحساسحالت

تبدیل حلقه به گزاره شرطی◦



تحلیل و طراحی نرم افزار

1394مهر 25
سید محمدمهدی احمدپناه
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 آبشاریمدل فرآیندی
ثابت، مشخص و پایدار بودن نیازها◦
آسان ترتولید مستندات ◦
سادگی استفاده و فهم ◦
سادگی بررسی و کنترل مراحل◦
یک بارهتولید کامل نرم افزار با پیمایش ◦

ارتباط
شروع پروژه-
جمع آوری-

نیازها

برنامه ریزی
تخمین -
زمان بندی- مدل سازی

تحلیل-
طراحی- ساخت

پیاده سازی-
آزمون-

استقرار
تحویل-
یپشتیبان-
بازخورد-

آبشارینمایی از مدل فرآیندی –10شکل 



تحلیل و طراحی نرم افزار
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نمودار درخواست سیستم

نمودار درخواست سیستم نرم افزار–11شکل 



تحلیل و طراحی نرم افزار
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نمودار کلاس

(متدهاو فیلدهابدون ذکر )نمودار کلاس نرم افزار –12شکل 



تحلیل و طراحی نرم افزار
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پیاده سازیفازهای
WLلغوی و نحوی زبان تحلیل گر◦

ترلی، وابستگی کنگراف هایگراف جریان کنترل، درخت غلبه رو به جلو، ◦
و وابستگی برنامهداده ایوابستگی 

برنامه برای حالت غیر حساس به پیشرفتبازنویس◦
برنامه برای حالت حساس به پیشرفتبازنویسحلقه و تحلیل گر◦



شرح کلی پیاده سازی و ابزارهای مورد استفاده
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پیاده سازی به زبان جاوا
لغوی و نحوی زبانتحلیل گر

Bisonو JFlexابزارهای ◦

تولید شده توسط ابزارهاکدهایتغییر دستی ◦

Cبه زبان برنامه هامتناظرکدهایتولید ◦

 وابستگی گراف هاینمایش گرافیکی
dotو زبان GraphVizابزار ◦



شرح کلی پیاده سازی و ابزارهای مورد استفاده
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حلقهتحلیل گر

پیشرفته کد مبدأویرایش گر
TokenMakerMakerو ابزار RSyntaxTextAreaکتابخانه ◦



ایجاد رابط کاربری گرافیکی
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 برنامهقابلیت های، با حفظ پیچیدگی هابه حداقل رساندن
طراحی گرافیکی اولیه
 به سانبرنامه نوینظرسنجی و گرفتن بازخورد از تعدادی از

عنوان کاربران ابزار



ایجاد رابط کاربری گرافیکی
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یبرخی از نکات مورد استفاده در هنگام طراحی رابط کاربر
دکمه هاو گزینه هاو سبک یکسان همگونی◦
کاربردرخواست هایبازخورد مناسب برنامه به تغییرات و ◦
منطقی اجزای مرتبط صفحهگروه بندی◦
با معنا و متفاوتقالب هایو رنگ هااستفاده از ◦
یادمان هاو میان برهاایجاد ◦
سازگار با تغییرات ابعاد صفحه◦



ایجاد رابط کاربری گرافیکی
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نمایی از رابط کاربری گرافیکی نرم افزار–13شکل 



ایجاد رابط کاربری گرافیکی
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نمایی از رابط کاربری گرافیکی نرم افزار–14شکل 



و آزمون نرم افزارراستی آزمایی
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استفاده از روش آزمون دامنه
طراحی و تولید موارد آزمون◦

 ساختارهای مختلف زبانWL

مختلف نقض خط مشی عدم تداخلحالت های
صریح و ضمنیجریان های



و آزمون نرم افزارراستی آزمایی
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program;

inL l1;

inH h1;

outL l1;

l1 = h1 + 2;

outH h1

program;

inL l1;

inH h1;

outL l1;

l1 = h1 + 2;

outH h1

02basic.wl

مورد آزمون اول–15شکل 

PINI



و آزمون نرم افزارراستی آزمایی
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03assign.wl

program;
inL l1;
inH h1;
l1 = h1;
outL l1;
outH h1

مورد آزمون دوم–16شکل 

program; 
inL l1; 
inH h1; 
l1 = h1; 
if TRUE then 

outL BOT 
else 

outL l1 
endif;
outH h1

PINI



07Ifelseadvanced.wl

و آزمون نرم افزارراستی آزمایی
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program;
inL l1 , l2;
inH h1 , h2;
if !(l1 == 0) then 

l1 = 2 + 4 + l1;
outL l1;
if h1 > 6 then

l1 = 6;
outL l1;
outH h1

endif
else

if l2 > 3 then
l1 = l1 + 1;
outL l1;
outH h2

else
l2 = 2 + h2;
outL l2;
outL l1

endif
endif;
outL l1;
outL l2

PINI

مورد آزمون سوم–17شکل 

program; 
inL l1, l2; inH h1, h2; 
if !((l1 == 0)) then 

l1 = 2 + 4 + l1; outL l1; 
if h1 > 6 then 

l1 = 6; 
if ((!(l1 == 0)) or (!(l1 == 0) and (h1 

> 6) and (!(l1 == 0))))  then 
NOP   

else outL l1 
endif; 
outH h1 endif

else 
if l2 > 3 then 

l1 = l1 + 1; outL l1; outH h2 
else 

l2 = 2 + h2; 
if (!(l2 > 3) and !(!(l1 == 0)))  then 

outL BOT else outL l2 endif;
outL l1

endif
endif; 
if (!(l1 == 0))  then NOP else outL l1 endif; 
if (!(l2 > 3) and !(!((l1 == 0))))  then 

outL BOT 
else outL l2 
endif



و آزمون نرم افزارراستی آزمایی
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برنامه مورد آزمون سومخروجی هایو ورودی هانمونه –1جدول 

Violation

outL 

l2 

(line# 

24)

outL 

l1 

(line# 

23)

outL 

l1 

(line# 

20)

outL 

l2 

(line# 

19)

outH 

h2 

(line# 

16)

outL 

l1 

(line# 

15)

outH

h1 

(line# 

10)

outL 

l1 

(line# 

9)

outL 

l1 

(line# 

6)

h2h1l2l1

No
41--01---0040

41--11---1140

Yes
2002-----0020

3003-----1120

Yes
06----7671701

07------71601



و آزمون نرم افزارراستی آزمایی
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Violation

outL 

l2 

(line# 

24)

outL 

l1 

(line# 

23)

outL 

l1 

(line

# 20)

outL 

l2 

(line# 

19)

outH 

h2 

(line# 

16)

outL 

l1 

(line# 

15)

outH 

h1 

(line# 

10)

outL 

l1 

(line# 

9)

outL 

l1 

(line# 

6)

h2h1l2l1

No
4---01---0040

4---11---1140

No
BOT00BOT-----0020

BOT00BOT-----1120

No
0-----7-71701

0-------71601

به پیشرفت مورد آزمون سومغیرحساسحالت بازنویسی شدهبرنامه خروجی هایو ورودی هانمونه –2جدول 
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program;

inL l1;

inH h1 , h2;

while l1 > 0 do

l1 = h2 + l1

done;

while h1 > l1 do

l1 = l1 + 3;

outL l1

done;

outL l1;

outH h1

11whilewhileconcat.wl

و آزمون نرم افزارراستی آزمایی
program; 

inL l1; 

inH h1, h2; 

while l1 > 0 do 

l1 = h2 + l1 

done; 

while h1 > l1 do 

l1 = l1 + 3; 

if TRUE then 

NOP 

else 

outL l1 

endif

done; 

if TRUE then 

NOP 

else 

outL l1 

endif;

outH h1

PINIPSNI

program; 

inL l1; 

inH h1, h2; 

if h2 < 0 then 

while l1 > 0 do 

l1 = h2 + l1 

done 

endif; 

while h1 > l1 do 

l1 = l1 + 3; 

if TRUE then NOP 

else outL l1 

endif

done; 

if TRUE then NOP 

else outL l1 

endif; 

outH h1
مورد آزمون چهارم–18شکل 
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Violation
outH h1 

(line# 12)

outL l1 

(line# 11)

outL l1 

(line# 9)
h2h1l1

Yes
133010

563,6150

Yes
022-201

552,5-251

Yes
diverge011

122-211
برنامه مورد آزمون سومخروجی هایو ورودی هانمونه –3جدول 
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Violation
outH h1 

(line# 12)

outL l1 

(line# 11)

outL l1 

(line# 9)
h2h1l1

No
1--010

5--150

No
0---201

5---251

No
diverge011

1---211
به پیشرفت مورد آزمون چهارمغیرحساسحالت بازنویسی شدهبرنامه خروجی هایو ورودی هانمونه –4جدول 
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Violation
outH h1 

(line# 12)

outL l1 

(line# 11)

outL l1 

(line# 9)
h2h1l1

No
1--010

5--150

No
0---201

5---251

No
1--011

1---211
حالت حساس به پیشرفت مورد آزمون چهارمبازنویسی شدهبرنامه خروجی هایو ورودی هانمونه –5جدول 



جمع بندی

1394مهر 25 سید محمدمهدی احمدپناه 46از 41

خط مشی امنیتی عدم تداخل
حساس به پیشرفت◦
غیر حساس به پیشرفت◦

 زبانWLو بازنویسی برنامه
گراف وابستگی برنامه◦
بازنویسیالگوریتم های◦

صحت و شفافیت
پیاده سازی و آزمون ابزار



کارهای آینده
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 و رایج پیشرفته ترزبان های برنامه نویسی
زبان های دارای ساختارهای پیچیده◦

پشتیبانی از تابع
 شیءکلاس و
چندنخی
جدیدترویژگی های

 حلقهتحلیل گربهبود
 پیاده سازی شدهبهبود ابزار

سرعت◦
حافظه◦
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