
طراحی و پیاده سازی ابزاری به منظور
عدم تداخل امنیتیِاِعمال خط مشی

مبتنی بر روش بازنویسی برنامه

محمدمهدی احمدپناهسید
smahmadpanah@aut.ac.ir

سلیمان فلاحدکتر مهران : راهنمااستاد

دانشگاه صنعتی امیرکبیر
1394مهر 25

d

فهرست

مقدمه
خط مشی امنیتی عدم تداخل و اِعمال آن
 زبانWLو گراف وابستگی برنامه
الگوریتم بازنویسی برنامه
پیاده سازی و ایجاد رابط کاربری
آزمون نرم افزار
جمع بندی و کارهای آینده

1394مهر 25 سید محمدمهدی احمدپناه 46از 2

مقدمه

 [1]زبان مبناامنیت
تحلیل ایستا◦

وارسی مدل، تفسیر انتزاعینوع مبناحلیل جریان داده، تحلیل ت ،

تحلیل پویا◦
نظارت اجرا

تعریف مسئله
اعمال یک نیازمندی امنیتی به کد مبدأ برنامه◦

1394مهر 25 سید محمدمهدی احمدپناه 46از 3

خط مشی امنیتی عدم تداخل

خط مشی امنیتی
عدم تداخل◦

:بر اساس وضعیت پیشرفت برنامهدسته بندی◦
حساس به پیشرفت
به پیشرفتغیرحساس

1394مهر 25 سید محمدمهدی احمدپناه 46از 4

مروری بر کارهای گذشته

 [2]نوع سامانهارائه یک
کارهای اولیه
محافظه کارانه

[6]یستا یک روش تبدیل برنامه، ترکیبی از تحلیل پویا و ا
 برنامه هاعدم توجه به رفتار خاتمه
 ضمنی بدون انتسابجریان هایعدم تشخیص

 [7]درون برنامه ایامنیتی پویای ناظرهایچارچوبی برای
 طراحی یک ماشین به کمک رخدادهای انتزاعی زمان اجرا و

[8]ویرایش اجرا توسط اطلاعات ایستا

1394مهر 25 سید محمدمهدی احمدپناه 46از 5

اِعمال عدم تداخل

 ه حساس بتداخلِهیچ روش کاملاً پویایی برای اعمال عدم
[9.]جریان وجود ندارد

 تداخل را برآورده که عدم برنامه هاییمسئله تشخیص
:می کنند

[2.]نیستتصمیم پذیر◦
 ایستا قابل اعمال نیستروش هایتوسط.

[10.]بازگشتی نیستشمارش پذیرمکمل ◦
 اجرا قابل اعمال نیستناظرهایتوسط.

 [1]روش بازنویسی برنامه

1394مهر 25 سید محمدمهدی احمدپناه 46از 6

WLزبان

1394مهر 25 سید محمدمهدی احمدپناه 46از 7

program ::= program ; clist

clist ::= c | clist ; c

exp ::= b | n | x | exp == exp | exp < exp | exp <= exp | exp >= exp | exp > exp

| exp + exp | exp - exp | exp or exp | exp and exp | ! exp

c ::= NOP | x = exp | inL varlist | inH varlist | outL x | outH x | outL BOT

| outH BOT

| if exp then clist endif | if exp then clist else clist endif | while exp do

clist done

varlist ::= x | x , varlist

b ::= true | false | TRUE | FALSE

n ::= integer_number

x ::= identifier

WLنحو زبان –1شکل

گراف وابستگی برنامه

 سطح بالا به ورودی هایاطلاعات از جریان هایتشخیص
سطح پایینخروجی های

 جهت دارگراف
برنامهعبارت هاییا گزاره ها: گره ها◦
[11]داده ایکنترلی یا وابستگی های: یال ها◦

انواع وابستگی
کنترلی◦
داده ای◦

1394مهر 25 سید محمدمهدی احمدپناه 46از 8
و گراف وابستگی برنامه آن WLبه زبان برنامه ای–2شکل

program;
inL l1, l2;
inH h1;
if l1 == 0 then

l2 = h1
else

NOP
endif;
outL l2

گراف وابستگی برنامه

1394مهر 25 سید محمدمهدی احمدپناه 46از 9
[15]نمودار کلی نحوه تولید گراف وابستگی برنامه از روی کد مبدأ برنامه –3شکل

گراف جریان کنترل

بلوک پایه
تولید در هنگام تشکیل درخت تجزیه

1394مهر 25 سید محمدمهدی احمدپناه 46از 10
[16]نحوه تولید گراف جریان کنترل –4شکل

پس غلبه

 پس غلبهمرزهای
.می شوندمنجرالفگرهبهکهانشعابینقاطنزدیک ترین◦

کنترلیوابستگی

گراف وابستگی کنترلی

1394مهر 25 سید محمدمهدی احمدپناه 46از 11

داده ایگراف وابستگی

داده ایوابستگی
شدهمقداردهیآندرمتغیرآنکهگزاره اینزدیک ترینفقط◦

.داشتخواهدراوابستگیاست،

1394مهر 25 سید محمدمهدی احمدپناه 46از 13

گراف وابستگی برنامه

 داده ایترکیب گراف وابستگی کنترلی و
خط ساده: یال وابستگی کنترلی◦
خط چین: داده اییال وابستگی ◦

1394مهر 25 سید محمدمهدی احمدپناه 46از 14

program;
inL l1, l2;
inH h1;
if l1 == 0 then

l2 = h1
else

NOP
endif;
outL l2

و گراف وابستگی برنامه آن WLبه زبان برنامه ای–2شکل

الگوریتم بازنویسی برنامه
الگوریتم کلی◦

 تابعaffect

1394مهر 25 سید محمدمهدی احمدپناه 46از 15

foreach statement X producing a high input event hin do

foreach statement Y producing a low observable

event eL do

if 𝑌 ∈ 𝑎𝑓𝑓𝑒𝑐𝑡(𝑋) then

transform Y into Yˊ such that

𝑌′ ∉ 𝑎𝑓𝑓𝑒𝑐𝑡(𝑋) in the new program

end

end

end

[5]الگوریتم کلی بازنویسی برای اعمال خط مشی عدم تداخل –7شکل

تبازنویسی برای حالت غیر حساس به پیشرف

𝑖𝑛𝐻 ℎ ⤳ outL l
سطح بالا ورودی هایمتأثر از outL lجایگزین کردن دستورات ◦

NOPیا outL با دستورات

مسیرشرط هایاستفاده از ◦
 تعریف شرط مسیر
 مسیرگره هایاجرای شرط هایعطفیحاصل ترکیب

تعریف شرط اجرای گره

جریان صریح و ضمنی◦

1394مهر 25 سید محمدمهدی احمدپناه 46از 16

تبازنویسی برای حالت غیر حساس به پیشرف

1394مهر 25
سید محمدمهدی احمدپناه

46از 17

RWPINI (M, G):

Initialize 𝐹 to the set of all paths 𝑆𝑡𝑎𝑟𝑡 ↪ 𝑃 ⤳ 𝑃ˊ in the PDG G of M where P is the node

representing a high input and 𝑃ˊ is the node representing outL l for some l;

if 𝐹 = ∅ then

return M;

end

create a copy of M, name it Mˊ, and change it as follows:

determine the type of flow indicated by each path 𝑓 ∈ 𝐹;

foreach 𝑓 ∈ 𝐹 do:

Generate the path condition of 𝑓 as the conjunction of the execution conditions of node

N satisfying 𝑓 = 𝑆𝑡𝑎𝑟𝑡 ⤳ X ՜
𝑑
𝑁 ⤳ 𝑃ˊ if there are such nodes on the path and true

otherwise;

end

foreach node n on G representing outL l for some l do

let c be the disjunction of the path conditions of all 𝑓ˊ ∈ 𝐹 which terminate at n;

if all paths 𝑓ˊ ∈ 𝐹 terminating at n indicate an explicit flow then

replace outL l with the statement “if c then outL  else outL l endif”;

else

replace outL l with the statement “if c then NOP else outL l endif”;

end

end

return Mˊ;

[5]الگوریتم بازنویسی عدم تداخل حالت غیر حساس به پیشرفت –8شکل

تبازنویسی برای حالت حساس به پیشرف

1394مهر 25 سید محمدمهدی احمدپناه 46از 18

وضعیت پیشرفت برنامه
خاتمه◦
واگرایی◦

 ساختارWhile در زبانWL

وابسته به مقدار سطح بالاحلقه هایتحلیل ◦
 ،تصمیم ناپذیردر حالت کلیprogram;

inH h1;
inL l1;
while h1 < l1 do

NOP;
h1 = h1 - l1

done;
outL l1

Loop Analysis “h1 >= l1 or l1 < 0”

تبازنویسی برای حالت حساس به پیشرف

1394مهر 25
سید محمدمهدی احمدپناه

46از 19

RWPSNI(M, G):

Initialize D to the set of all paths 𝑆𝑡𝑎𝑟𝑡 ↪ 𝑃 ↪ 𝐸+ in G where 𝐸+ is a path terminating at a loop guard and

P is the node representing a high input;

Mˊ = RWPINI(M, G);

if 𝐷 = ∅ then

return Mˊ;

end

H = max {height(n) | n is a node on G}, where height is a function that returns the height of a given node on

the tree obtained by removing data dependence edges from G;

Change Mˊ as follows:

for h = H to 1 do

foreach node n with height(n) = h representing a loop on some path 𝑓 ∈ 𝐷 do

r = LoopAnalyzer(loop(n));

if r = False then

if 𝑋՜
𝑐
𝑛 appears on at least one path 𝑓 ∈ 𝐷 do

replace loop(n) with the statement “if guard(n) then body(n) endif”;

end

else

if r ≠ True then

replace loop(n) with the statement “if r then loop(n) endif”;

end

end

end

h = h – 1;

end

return Mˊ;
[5]الگوریتم بازنویسی عدم تداخل حالت حساس به پیشرفت –9شکل

بازنویسی برنامهالگوریتم های

1394مهر 25 سید محمدمهدی احمدپناه 46از 20

شدهاثباتاستفادهموردالگوریتم هایشفافیتوصحت
[5].است

ردبازنویسیازپسبرنامه،معناشناختتغییرامکان
پیشرفتبهحساسحالت

تبدیل حلقه به گزاره شرطی◦

تحلیل و طراحی نرم افزار

1394مهر 25
سید محمدمهدی احمدپناه

46از 21

 آبشاریمدل فرآیندی
ثابت، مشخص و پایدار بودن نیازها◦
آسان ترتولید مستندات ◦
سادگی استفاده و فهم ◦
سادگی بررسی و کنترل مراحل◦
یک بارهتولید کامل نرم افزار با پیمایش ◦

ارتباط
شروع پروژه-
جمع آوری-

نیازها

برنامه ریزی
تخمین -
زمان بندی- مدل سازی

تحلیل-
طراحی- ساخت

پیاده سازی-
آزمون-

استقرار
تحویل-
یپشتیبان-
بازخورد-

آبشارینمایی از مدل فرآیندی –10شکل

تحلیل و طراحی نرم افزار

1394مهر 25 سید محمدمهدی احمدپناه 46از 22

نمودار درخواست سیستم

نمودار درخواست سیستم نرم افزار–11شکل

تحلیل و طراحی نرم افزار

1394مهر 25 سید محمدمهدی احمدپناه 46از 23

نمودار کلاس

(متدهاو فیلدهابدون ذکر)نمودار کلاس نرم افزار –12شکل

تحلیل و طراحی نرم افزار

1394مهر 25 سید محمدمهدی احمدپناه 46از 24

پیاده سازیفازهای
WLلغوی و نحوی زبان تحلیل گر◦

ترلی، وابستگی کنگراف هایگراف جریان کنترل، درخت غلبه رو به جلو، ◦
و وابستگی برنامهداده ایوابستگی

برنامه برای حالت غیر حساس به پیشرفتبازنویس◦
برنامه برای حالت حساس به پیشرفتبازنویسحلقه و تحلیل گر◦

شرح کلی پیاده سازی و ابزارهای مورد استفاده

1394مهر 25 سید محمدمهدی احمدپناه 46از 25

پیاده سازی به زبان جاوا
لغوی و نحوی زبانتحلیل گر

Bisonو JFlexابزارهای ◦

تولید شده توسط ابزارهاکدهایتغییر دستی ◦

Cبه زبان برنامه هامتناظرکدهایتولید ◦

 وابستگی گراف هاینمایش گرافیکی
dotو زبان GraphVizابزار ◦

شرح کلی پیاده سازی و ابزارهای مورد استفاده

1394مهر 25 سید محمدمهدی احمدپناه 46از 26

حلقهتحلیل گر

پیشرفته کد مبدأویرایش گر
TokenMakerMakerو ابزار RSyntaxTextAreaکتابخانه ◦

ایجاد رابط کاربری گرافیکی

1394مهر 25 سید محمدمهدی احمدپناه 46از 27

 برنامهقابلیت های، با حفظ پیچیدگی هابه حداقل رساندن
طراحی گرافیکی اولیه
 به سانبرنامه نوینظرسنجی و گرفتن بازخورد از تعدادی از

عنوان کاربران ابزار

ایجاد رابط کاربری گرافیکی

1394مهر 25 سید محمدمهدی احمدپناه 46از 28

یبرخی از نکات مورد استفاده در هنگام طراحی رابط کاربر
دکمه هاو گزینه هاو سبک یکسان همگونی◦
کاربردرخواست هایبازخورد مناسب برنامه به تغییرات و ◦
منطقی اجزای مرتبط صفحهگروه بندی◦
با معنا و متفاوتقالب هایو رنگ هااستفاده از ◦
یادمان هاو میان برهاایجاد ◦
سازگار با تغییرات ابعاد صفحه◦

ایجاد رابط کاربری گرافیکی

1394مهر 25 سید محمدمهدی احمدپناه 46از 29

نمایی از رابط کاربری گرافیکی نرم افزار–13شکل

ایجاد رابط کاربری گرافیکی

1394مهر 25 سید محمدمهدی احمدپناه 46از 30

نمایی از رابط کاربری گرافیکی نرم افزار–14شکل

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 31

استفاده از روش آزمون دامنه
طراحی و تولید موارد آزمون◦

 ساختارهای مختلف زبانWL

مختلف نقض خط مشی عدم تداخلحالت های
صریح و ضمنیجریان های

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 32

program;

inL l1;

inH h1;

outL l1;

l1 = h1 + 2;

outH h1

program;

inL l1;

inH h1;

outL l1;

l1 = h1 + 2;

outH h1

02basic.wl

مورد آزمون اول–15شکل

PINI

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 33

03assign.wl

program;
inL l1;
inH h1;
l1 = h1;
outL l1;
outH h1

مورد آزمون دوم–16شکل

program;
inL l1;
inH h1;
l1 = h1;
if TRUE then

outL BOT
else

outL l1
endif;
outH h1

PINI

07Ifelseadvanced.wl

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 34

program;
inL l1 , l2;
inH h1 , h2;
if !(l1 == 0) then

l1 = 2 + 4 + l1;
outL l1;
if h1 > 6 then

l1 = 6;
outL l1;
outH h1

endif
else

if l2 > 3 then
l1 = l1 + 1;
outL l1;
outH h2

else
l2 = 2 + h2;
outL l2;
outL l1

endif
endif;
outL l1;
outL l2

PINI

مورد آزمون سوم–17شکل

program;
inL l1, l2; inH h1, h2;
if !((l1 == 0)) then

l1 = 2 + 4 + l1; outL l1;
if h1 > 6 then

l1 = 6;
if ((!(l1 == 0)) or (!(l1 == 0) and (h1

> 6) and (!(l1 == 0)))) then
NOP

else outL l1
endif;
outH h1 endif

else
if l2 > 3 then

l1 = l1 + 1; outL l1; outH h2
else

l2 = 2 + h2;
if (!(l2 > 3) and !(!(l1 == 0))) then

outL BOT else outL l2 endif;
outL l1

endif
endif;
if (!(l1 == 0)) then NOP else outL l1 endif;
if (!(l2 > 3) and !(!((l1 == 0)))) then

outL BOT
else outL l2
endif

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 35

برنامه مورد آزمون سومخروجی هایو ورودی هانمونه –1جدول

Violation

outL

l2

(line#

24)

outL

l1

(line#

23)

outL

l1

(line#

20)

outL

l2

(line#

19)

outH

h2

(line#

16)

outL

l1

(line#

15)

outH

h1

(line#

10)

outL

l1

(line#

9)

outL

l1

(line#

6)

h2h1l2l1

No
41--01---0040

41--11---1140

Yes
2002-----0020

3003-----1120

Yes
06----7671701

07------71601

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 36

Violation

outL

l2

(line#

24)

outL

l1

(line#

23)

outL

l1

(line

20)

outL

l2

(line#

19)

outH

h2

(line#

16)

outL

l1

(line#

15)

outH

h1

(line#

10)

outL

l1

(line#

9)

outL

l1

(line#

6)

h2h1l2l1

No
4---01---0040

4---11---1140

No
BOT00BOT-----0020

BOT00BOT-----1120

No
0-----7-71701

0-------71601

به پیشرفت مورد آزمون سومغیرحساسحالت بازنویسی شدهبرنامه خروجی هایو ورودی هانمونه –2جدول

1394مهر 25 سید محمدمهدی احمدپناه 46از 37

program;

inL l1;

inH h1 , h2;

while l1 > 0 do

l1 = h2 + l1

done;

while h1 > l1 do

l1 = l1 + 3;

outL l1

done;

outL l1;

outH h1

11whilewhileconcat.wl

و آزمون نرم افزارراستی آزمایی
program;

inL l1;

inH h1, h2;

while l1 > 0 do

l1 = h2 + l1

done;

while h1 > l1 do

l1 = l1 + 3;

if TRUE then

NOP

else

outL l1

endif

done;

if TRUE then

NOP

else

outL l1

endif;

outH h1

PINIPSNI

program;

inL l1;

inH h1, h2;

if h2 < 0 then

while l1 > 0 do

l1 = h2 + l1

done

endif;

while h1 > l1 do

l1 = l1 + 3;

if TRUE then NOP

else outL l1

endif

done;

if TRUE then NOP

else outL l1

endif;

outH h1
مورد آزمون چهارم–18شکل

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 38

Violation
outH h1

(line# 12)

outL l1

(line# 11)

outL l1

(line# 9)
h2h1l1

Yes
133010

563,6150

Yes
022-201

552,5-251

Yes
diverge011

122-211
برنامه مورد آزمون سومخروجی هایو ورودی هانمونه –3جدول

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 39

Violation
outH h1

(line# 12)

outL l1

(line# 11)

outL l1

(line# 9)
h2h1l1

No
1--010

5--150

No
0---201

5---251

No
diverge011

1---211
به پیشرفت مورد آزمون چهارمغیرحساسحالت بازنویسی شدهبرنامه خروجی هایو ورودی هانمونه –4جدول

و آزمون نرم افزارراستی آزمایی

1394مهر 25 سید محمدمهدی احمدپناه 46از 40

Violation
outH h1

(line# 12)

outL l1

(line# 11)

outL l1

(line# 9)
h2h1l1

No
1--010

5--150

No
0---201

5---251

No
1--011

1---211
حالت حساس به پیشرفت مورد آزمون چهارمبازنویسی شدهبرنامه خروجی هایو ورودی هانمونه –5جدول

جمع بندی

1394مهر 25 سید محمدمهدی احمدپناه 46از 41

خط مشی امنیتی عدم تداخل
حساس به پیشرفت◦
غیر حساس به پیشرفت◦

 زبانWLو بازنویسی برنامه
گراف وابستگی برنامه◦
بازنویسیالگوریتم های◦

صحت و شفافیت
پیاده سازی و آزمون ابزار

کارهای آینده

1394مهر 25 سید محمدمهدی احمدپناه 46از 42

 و رایج پیشرفته ترزبان های برنامه نویسی
زبان های دارای ساختارهای پیچیده◦

پشتیبانی از تابع
 شیءکلاس و
چندنخی
جدیدترویژگی های

 حلقهتحلیل گربهبود
 پیاده سازی شدهبهبود ابزار

سرعت◦
حافظه◦

منابع و مراجع

1394مهر 25 سید محمدمهدی احمدپناه 46از 43

[1] F.B. Schneider, J.G. Morrisett, and R. Harper, “A Language-Based Approach to Security", in

Informatics - 10Years Back. 10Years Ahead, Springer-Verlag Berlin, Heidelberg, 2001, pp. 86-101.

[2] D. Volpano and G. Smith, “A Type-Based Approach to Program Security”, TAPSOFT '97

Proceedings of the 7th International Joint Conference CAAP/FASE on Theory and Practice of Software

Development, 1997, pp. 607-621.

[3] J.A. Goguen and J. Meseguer, “Security Policies and Security Models”, in Proceedings of IEEE

Symposium on Security and Privacy,Vol. 12, IEEE, 1982, pp. 11-18.

[4] M.R. Clarkson and F.B. Schneider, “Hyperproperties”, Journal of Computer Security - 7th

InternationalWorkshop on Issues in theTheory of Security (WITS'07), 2010, pp. 1157-1210.

[5] A. Lamei and M. S. Fallah, “Rewriting-Based Enforcement of Noninterference in Programs

with Observable Intermediate Values”, submitted to Journal of Universal Computer Science,

2015.

[6] V.N. Venkatakrishnan, W. Xu, D.C. DuVarney, and R. Sekar, “Provably Correct Runtime

Enforcement of Non-interference Properties”, in Proceedings of the 8th International Conference

on Information and Communications Security, ICICS'06, Springer-Verlag Berlin, Heidelberg, 2006,

pp. 332-351.

[7] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly inlining of dynamic security monitors",

Computers and Security-Silver Linings in the Cloud, 2012, pp. 827-843.

منابع و مراجع

1394مهر 25 سید محمدمهدی احمدپناه 46از 44

[8] G. Le Guernic, A. Banerjee, T. Jensen, and D.A. Schmidt, “Automata-based confidentiality

monitoring”, in Proceedings of the 11th Asian computing science conference on Advances in

computer science: secure software and related issues, ASIAN'06, Vol. 4435, Springer-Verlag Berlin,

Heidelberg, 2007, pp. 75-89.

[9] A. Russo and A. Sabelfeld, “Dynamic vs. Static Flow-Sensitive Security Analysis”, in

Proceedings of the 2010 23rd IEEE Computer Security Foundations Symposium, CSF '10, IEEE, 2010,

pp. 186-199.

[10] G.M. Kevin W. Hamlen and F.B. Schneider, “Computability classes for enforcement

mechanisms”, ACM Transactions on Programming Languages and Systems, Vol. 28, 2006, pp. 175-

205.

[11] J. Ferrante, K.J. Ottenstein, and J.D. Warren, “The program dependence graph and its use

in optimization”, ACM Transactions on Programing Languages and Systems, Vol.9, 1987, pp. 319-

349.

[12] H. Mantel and H. Sudbrock, “Types vs. pdgs in information flow analysis”, in Logic-Based

Program Synthesis andTransformation, Springer, 2013, pp. 106-121.

[13] “JFlex”,Available: http://jflex.de/ [Sep. 10, 2015].

[14] “Bison”,Available: https://www.gnu.org/software/bison/ [Sep. 10, 2015].

منابع و مراجع

1394مهر 25 سید محمدمهدی احمدپناه 46از 45

[15] K. M. Anderson, Class Lecture, Topic: “Lecture 15: Control Dependence Graphs” CSCI 5828,

University of Colorado at Boulder, Spring 2000, Available:

http://www.cs.colorado.edu/~kena/classes/5828/s00/lectures/lecture15.pdf [Jul. 25 2015].

[16] T. Teitelbaum, Class Lecture, Topic: “Lecture 24: Control Flow Graphs” Introduction to

Compilers, Cornell University, 2008,

http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf [Jul. 25 2015].

[17] C. N. Fischer, Class Lecture, Topic: “The Program Dependence Graph: Control Flow and

Control Dependences” S502 Compilers, Fall 2008, Available:

http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture19.4up.pdf [Jul. 25 2015].

[18] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-sensitive security”, in

Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS '12, ACM,

2012, pp. 881-893.

[19] Roger S. Pressman, “Process Models” in Software Engineering: A Practitioner’s Approach, 7th ed., Mc

Graw-Hill Higher Education, 2010, pp. 39-41.

[20] E. R. Gansner and S. C. North. “An Open Graph Visualization and Its Application to Software

Engineering”, Software – Practice and Experience Journal, vol. 30, No. 11, 2000, pp. 1203-1233, Available:

www.graphviz.org [Aug. 12 2015].

[21] “AProVE”, Available: http://aprove.informatik.rwthـaachen.de/index.asp?subform=home.html

[Aug. 25 2015].

[22] “RSyntaxTextArea”,Available: http://bobbylight.github.io/RSyntaxTextArea/ [Sep. 04 2015].

! با سپاس از توجه شما

1394مهر 25 سید محمدمهدی احمدپناه 46از 46

