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program ::= program ; clist
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exp:=b|n|x|exp==exp|exp<exp|exp<=exp|exp>=exp|exp>exp
|exp +exp|exp-exp|exporexp|expandexp|!exp

c :=NOP | x =exp | inL varlist | inH varlist | outL x | outH x | outL BOT
| outH BOT

| if exp then clist endif | if exp then clist else clist endif | while exp do
clist done

varlist ::= x| x, varlist
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affect ~U

foreach statement X producing a high input event h.. do
foreach statementY producing a low observable
event ¢, do
ifY € affect(X) then
transformY into Y~ such that
Y' & af fect(X) in the new program
end
end
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RWeini (M, G):
Initialize F to the set of all paths Start & P ~ P’ in the PDG G of M where P is the node
representing a high input and P’ is the node representing outL | for some |;
if £ = @ then
return M;

end
create a copy of M, name it M, and change it as follows:
determine the type of flow indicated by each path f € F;
foreach f € F do:

Generate the path condition of f as the conjunction of the execution conditions of node

N satisfying f = Start ~ X ke N ~ P’ if there are such nodes on the path and true
otherwise;
end
foreach node n on G representing outL | for some | do
let ¢ be the disjunction of the path conditions of all f* € F which terminate at n;
if all paths f” € F terminating at n indicate an explicit flow then
replace outL | with the statement “if ¢ then outL L else outL | endif”;

else
replace outL | with the statement “if ¢ then NOP else outL | endif”;
end
end
return M’;
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inH hl;
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NOP;
hl = hl - 11
done;

outL 11

VAT 00 YO

“h1 >= 11 or 11 < @”



U,

r—‘-‘(ﬁ"L Fna nk.f_uu

(e SSG Ly

295k o yeSl
A.ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

F3aalS w3 0353515
oleibl g yolid 5

2yl &yl 2> Sy ouighily

RWesni(M, G):
Initialize D to the set of all paths Start © P & E* in G where E™ is a path terminating at a loop guard and
P is the node representing a high input;
M= RWpy(M, G);
if D = @ then
return M’;

end
H = max {height(n) | n is 2 node on G}, where height is a function that returns the height of a given node on

the tree obtained by removing data dependence edges from G;
Change M" as follows:

forh=Hto | do
foreach node n with height(n) = h representing a loop on some path f € D do

r = LoopAnalyzer(loop(n));
if r = False then

if X>n appears on at least one path f € D do
replace loop(n) with the statement “if guard(n) then body(n) endif”;

end
else
if r # True then
replace loop(n) with the statement “if r then loop(n) endif”;
end
end
end
h=h-1;
end
return M’; ’ _
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@ Make Program Dependence Graph
Rewrite in Progress Insensitive mode

Rewrite in Progress Sensitive mode

ur program is
tactically correct

» Control Flow Graph is
created.
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| Clear Log

Current File Mame: 09whileifelse, wl
1 program;
2 inL 11 , 12;
3 inH hl, h2;
1 while 11 > 12 deo

if hl > 3 then
h2z = h2 + 1;
11 = h2;
outlL 11

else
12 = 12 + 1;
while 12 > 4

or false do

hl] = hl - 1;
outL 12
done
endif;
outlL 11;
outL 12
| [Mew File || Browse File || Clear
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() Make Program Dependence Graph
@ Rewrite in Progress Insensitive mode

() Rewrite in Progress Sensitive mode

Graph is

Clear Log

VAT 00 YO

Current File Name: 03assign.wl

SloS Sy l5 Tl y Sl

T

program;
inL 11;
inH hl;
11 = hl;
outlL 11;
outH hl

-

|£| PINI Rewrited ... | = = || C Source Code - 03assign.wl =8 = |£| PDG - 03assign.wl =8 X
1 program; #include <stdio.h> =
zinL 11;

z inH hl; ine TRUE 1

4/11 = hl; e true 1

s if TRUE then ine FALSE O

& outlL BOT ine false 0

7 else

8 outL 11 E
o endif; int main() { int 11; ./ type: low
10 canf ("%d", &11);

11 outH hl S/ type: high

; int hl;
scanf ("%d", &hl);

11 = hl
printf ("%d\n",11);

ETRET

; printf ("%d\n",hl);

A7 type: lov

7/ type: hic_

< [
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[ New File ][ Browse File ][
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program;
inL 11;

inH hl;

outL 11;

11 = hl + 2;
outH hl

program;
inL 11;

inH hl;

outL 11;

11 = hl + 2;
outH hl
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03assign.wl

program;
inL 11;
inH hl;
11 = hil;
outL 11;
outH hl

VAT 00 YO

7 outH hl

#3  outlL ]

program;
inL 11;
inH hl;

411 = hl;

if TRUE then
outL BOT
else
outL 11
endif;
outH hl
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program;
07Ifelseadvanced.wl oL 1. 125 inH hL, ha;
program; if 1'((11 == 9)) then
-, inL 11 , 12; 11 =2 + 4 + 11; outL 11;
l inH hl , h2; if hl > 6 then
» if 1(11 == 9) then 11 = 6;
11 = 2 + 4 + 11; if ((!(11 == 9)) or (!(11 == @) and (h1
outL 11; > 6) and (!(11 == 0)))) then
if hl > 6 then NOP
11 = 6; else outL 11
outL 11; endif;
outH hl outH hl endif
- endif else
else if 12 > 3 then
if 12 > 3 then 11 = 11 + 1; outL 11; outH h2
11 = 11 + 1; else
outL 11; 12 = 2 + h2;
outH h2 if (1(12 » 3) and !(!(11 == @))) then
else outlL BOT else outlL 12 endif;
12 = 2 + h2; outL 11
H58lp 5 ool outlL 12; endif
outL 11 endif;
. endif if (!(11 == @)) then NOP else outL 11 endif;
PYTXCH v endif; if ('(12 > 3) and !(!((11 == @)))) then
oanl slals outL 11; outlL BOT
outL 12 else outL 12
endif
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outL | outL | outH | outL | outH | outL | outL | outL | outL

11 11 hil 11 h2 12 11 11 12 .
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(line# | (line# | (line# [ (line# | (line# |(line# | (line# | (line# | (line#

o en
- 6) 9) | 200 | 15) | 16) | 19) | 20) | 23) | 24)

0{4/0|0| - - - 1 0 - - 1 4
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ofalafa] - | -] -2 |2 ]|-|-]1]4
0[{2|0|0 | - - - - - 2 0 0 2
Yes
o211 - - - - - 3 0 0 3
11071 7 6 / - - - - 6 0
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program;

inL 11;

inH hl , h2;

while 11 > 0 do
11 = h2 + 11

done;

while hl > 11 do
11 = 11 + 3;
outL 11

done;

outL 11;

outH hl

—

el QS*)'T S0 —VA S

VAT 00 YO

program;

inL 11;

inH hl, h2;

if h2 < @ then
while 11 > 0 do

11 = h2 + 11

done

endif;

while hl > 11 do
11 = 11 + 3;
if TRUE then NOP
else outlL 11
endif

done;

if TRUE then NOP

else outlL 11

endif;

outH hl
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outL I1 outL |1 outH hl _ _
11 | hl | h2 _ _ _ Violation
(line# 9) (line# 11) (line# 12)
0 1 0 3 3 1
Yes
0 5 1 3,6 6 5
1 0| -2 2 2 0
Yes
1 5 | -2 2,5 5 5
111 1]0 diverge
Yes
1 1 | -2 2 2 1
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outL |1 outL |1 outH h1l _ _
11 | hl | h2 _ _ _ Violation
(line# 9) (line# 11) (line# 12)
0 1| 0 - - 1
No
0| 5 1 - - 5
1 |0 | -2 - - 0
No
1 5 | -2 - - 5
1 (1] 0 diverge
No
1 1 | -2 - - 1
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" outL 11 outL 11 outH h1 o
11 | hl | h2 ] _ _ Violation
- (line#9) | (line#11) | (line# 12)
0 1 0 - - 1
No
vl T : =
1 0 -2 - - 0
No
B ' 5
1 1 0 - - 1
No
o 1 1 -2 - - 1
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