S

)l
&1{\)

U

£

P gapalS g 2o 0 3550515

9 4)l gslwesly 5 ()b
U315 poe el e b Jlacl
deliy (o933l 09,y (sihea

ol.:.éw‘ S MR Do

smahmadpanah@aut.ac.ir

@R\ T Y RN VPRSP JR vov

o’

oS sl o oiils
VWA 500 YO

(o=
W
I
[
’_“.,.(,,.a\ Fna Sk oo
(o SSS Ly w

dodoo ©®

5T Jlal 5 S35 poe el e Lo o
aolsy Siwly 315 WL oL @

ol (g gi3l pi ysSdl @

s k) oll g (g5lwesly @

JBle s el @

oaiz] slo)5 5 (gangex ®

Q \WAY 00 YO

PF3elS o2 9353413

oliydex! (sagotomo duw \td)‘ Y

(A

<
ﬁ,.(ﬂatgh;\pnlng_’-i\l »
(o SSS Ly

— [\] Loyl Sl @

9 Jols pae

ol Jles! lw ‘ | I ~ * O
<1, s WL o

aby Sl LSC‘).Q‘).a.u.o.(b cJo.)uo Lgu.’)‘g cl.uuo&j.ﬁ g}.J.’?U wd‘d ul.i).‘> g}.J.’?U

ALGOL nP.\TamM Ajax w41 Reaion = . 5-30 .

WA aTs A bl Not TIiObJeCtuum eade tnyv;
SSerm y Ianguage ISpVBM y
anc B o JavaScriptane ! |MP .
G+ +ABC V%?ﬁ[}fsﬁ Cami7 e Prolog - ‘ > ‘ <)Lb-‘
“’éx?""ge% PEARL

Programming
ob,:..s! ;,‘;}:;:H Scnpt PHP FiLJREE;f,E(CQJ ava

Common o s e, AT

= Pyth om =
38l crpasl ! I; . “ ®
e dols p louo oS 4 ool gaiilo SO Jlasel ©

2955k 32,650
A.ali 5

shell
Visual Ja

" oL VWAF 0 YO NETRVRS VIRV \tZB1A1
lellbl g59ls 5

2955k o yeS)
hli 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

high input)

low mput)

VAT 00 YO

JS8 pas il e s

..“. ‘ & b ®
J.>‘d.: o ©

low observable

Program

>

output

ML’)J g_,éj.w.u g_,uu..og u»Lw‘ 5 LSMMO ©

cl.%dp‘ GNP o

¥% I F

2955k o yeS)
A.ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

P gapalS g 2o 0 3550515

i\ %&)U)g %)5}0

[v] slobugss S a5l o

“e.Js‘ LSL%U
&51,1S alalons

[#] sl 5 Lgy Judoo 5l (oS 5 ol Jood g, S @

aol y» aails |L8, 4 axgi puc

clail Gy (et Gl > jaiS pas

[V] glaols 1oy9,0 Sy (el slo bbb gl oozl @
5 >l by eliil Gleolas) oS 4 il SO G"J‘b °

VAT 00 YO

[A] et Cledb) bawgs 121

al.gdp‘ GNP o

o=l 2

¥% 510

| [ﬂ] .Q)‘JJ S9=9 L)l")'>

by (Suily O$)3Tﬁ ‘) J}‘AS 'Q&.LC 45 L-;il.adu@l.;)." Mﬁ ; ®
:!..SLSA

sl pleye5)
sl 5 [] -
. - . o)
olaul g (s3lwesly

S L, W JLO.C‘ &@ l.;».u.‘" LSLng) .[a.wg&’

J3dles cogasl
s Jlogl BB > ol G Lanss
S [V ol s o 993L o9,y @

@ \V{'\\Cﬂﬁv&

P gapalS g 2o 0 3550515

st 6 gadkormn S \tdB\Re

el b Jas
9 S pae
ol Jles!

S, s WL
b 3 u::.mg‘,

2955k o yeS)
A.Ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

WL O3

program ::= program ; clist

clist::=c|clist; c

exp:=b|n|x|exp==exp|exp<exp|exp<=exp|exp>=exp|exp>exp
|exp +exp|exp-exp|exporexp|expandexp|!exp

c :=NOP | x =exp | inL varlist | inH varlist | outL x | outH x | outL BOT
| outH BOT

| if exp then clist endif | if exp then clist else clist endif | while exp do
clist done

varlist ::= x| x, varlist
b ::=true | false | TRUE | FALSE
n ::= integer_number

X .= identifier

WL ol g =) S5

P e YO oliydas] (Gagedaste daw Y7 51y

S, s WL
iy (Susly

2955k 32,650
A.ali 5

Slrl 5 (s3lweolsy
S8 W,

N33l a3l

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

Ay Suly SyS

2 YL o slagog)g 5l Dledlbl slag)l 2 arsess @

o=b v slo >,

program; @
inL 11, 12;
inH hl;
if 11 == 0 then @ @
12 = hl
else '
endif; ,)
outL 12 ,f
Ol 4ol (Sl SIS s WL b5 a4y slasliy = ¥ S
WWAE el YO oliyaas Gagodess da ¥7 51 A

I, 9 WL b5
4l 3 u.::.mg‘,

2955k o yeS)
A.ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

Ay Suly SyS

Program Code

'

Control Flow Forward Dominance

Graph Tree

Data Dependence

i

Control Dependence
Graph

R“/_/

Program Dependence
Graph

Graph

VAT 00 YO

Vo] aeb Toe oS (59, 5l asli p Siwly 31T 0dos o5o5 IS Jloges — ¥ JSC5
al.gdp‘ (St Suw \id)‘ q

JGI,S 9 WL b5
iy (Sl

2955k 32,650
hli 5

bl g s3luesly
S8 W,

N33l a3l

F3aalS w3 0353515

\WAF e YO

L= S I8

Ll Sob @

L35 iy S plSia 0 adg @

CFG for Block Statement

CFG(S1;S2; ..;SN) =

l

CFG(S1)
|
CFG(S2)
|
.
CFG(SN)

l

VP18 ol 18 addss ogo = ¥ IS

an:ml GNP o

\taBIAE

g e Cola OIS
b <5 Tl NS
£ o

1,5 s WL ol

aiyy Sty d”'l;w CSLQ))'Q °
Wigw oo o Ao a4 &S bl bl 5 SGop©

2955k 32,650
A.ali 5

él"q.‘ ,‘sjlmoél.d . o /“ ‘ .
x5 b, S ': (§< :""""". 5

N33l a3l

9 SR>

@ VAT 00 YO

F3aalS w3 0353515
oleibl g yolid 5

31,5 s WL o
iy (Sl

2955k 32,650
A.ali 5

olowy! g (s 3lwonly
S8 W,

N33l a3l

9 SR>

£

P gapalS g 2o 0 3550515
lelbl g55l3 5

Sodld iy 1S

6‘00‘0 Q;;m%‘ﬁ o

ol aoylake ol 53 pite] a5 GloliS o yiShos Ladd @

\Yay R Yo oL;_im‘ GNP o

\tZB1RAY

S, s WL
iy (Susly

2955k 32,650
A.ali 5

Slrl 5 (s3lweolsy
s h‘)

N33l a3l

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

Ay Suly SyS

slools ¢ Jyus Kislg &l,5 CuSy5 e
oolw las: J oS SKewly JL ©
u*-’*‘"-’ :6‘oo\o Gi,.w.;‘g JL: ©

é
CEEIPRE

VYAF 40 YO oliydex! (sagotomo duw \ig }‘ ¥

295k o yeSl
A.ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

P gapalS g 2o 0 3550515

Anly) gl i igS!
S e ,eXdl @

affect ~U

foreach statement X producing a high input event h.. do
foreach statementY producing a low observable
event ¢, do
ifY € affect(X) then
transformY into Y~ such that
Y' & af fect(X) in the new program
end
end

end

[B] g2 pae e b Jlacl sl (il SIS w680 = ¥ S

VWA ae YO oliydas] (Gagedaste daw 7 500

7

A
P

295k o yeSl
4..'.3 5

bl 9 s3lwecly
S8 W,

N33l a3l

P gapalS g 2o 0 3550515

bty 4y o b 2l g it

inH h ~ outL] e

YU mhaws slasosys 3l Sl OUtL | ol jgius 10,5 o550l
NOP L outL L of)geus b

s glado 5 el ©

VAT 00 YO

s Loy iy 5

s 20,5 5l > slab s ke LS5 ol

oL;_g.\.\.oo-‘ GNP o

oS sl byh

(2 § T2 pP Sy ©

\tB1Rl4

AT,

& N
r—‘-‘(ﬁ"L eIt SN sl

(e SSG Ly

295k o yeSl
A.ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

F3aalS w3 0353515
oleibl g yolid 5

SOy &) (> a2l Sy gl

RWeini (M, G):
Initialize F to the set of all paths Start & P ~ P’ in the PDG G of M where P is the node
representing a high input and P’ is the node representing outL | for some |;
if £ = @ then
return M;

end
create a copy of M, name it M, and change it as follows:
determine the type of flow indicated by each path f € F;
foreach f € F do:

Generate the path condition of f as the conjunction of the execution conditions of node

N satisfying f = Start ~ X ke N ~ P’ if there are such nodes on the path and true
otherwise;
end
foreach node n on G representing outL | for some | do
let ¢ be the disjunction of the path conditions of all f* € F which terminate at n;
if all paths f” € F terminating at n indicate an explicit flow then
replace outL | with the statement “if ¢ then outL L else outL | endif”;

else
replace outL | with the statement “if ¢ then NOP else outL | endif”;
end
end
return M’;
VFAF ol Yo o] 2yt 4 Gola 2 Sl J3105 e cumgiil o X0 — A JSC fs).‘\v

oL;_g.wl GNP Do

295k o yeSl
4..'.3 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

=y &) gl =dl> Sy =ik

dosls ©
!5l e
WL oL o While 5L o

YU s i 4 anly (glodil> oo ©

program;
inH hl;
inL 11;

while hl < 11 do
NOP;
hl = hl - 11
done;

outL 11

VAT 00 YO

“h1 >= 11 or 11 < @”

U,

r—‘-‘(ﬁ"L Fna nk.f_uu

(e SSG Ly

295k o yeSl
A.ali 5

bl 9 s3lwecly
S8 W,

N33l a3l

9 SR>

F3aalS w3 0353515
oleibl g yolid 5

2yl &yl 2> Sy ouighily

RWesni(M, G):
Initialize D to the set of all paths Start © P & E* in G where E™ is a path terminating at a loop guard and
P is the node representing a high input;
M= RWpy(M, G);
if D = @ then
return M’;

end
H = max {height(n) | n is 2 node on G}, where height is a function that returns the height of a given node on

the tree obtained by removing data dependence edges from G;
Change M" as follows:

forh=Hto | do
foreach node n with height(n) = h representing a loop on some path f € D do

r = LoopAnalyzer(loop(n));
if r = False then

if X>n appears on at least one path f € D do
replace loop(n) with the statement “if guard(n) then body(n) endif”;

end
else
if r # True then
replace loop(n) with the statement “if r then loop(n) endif”;
end
end
end
h=h-1;
end
return M’; ’ _
T (0] cé pis a0 wlos s 3105 pae cwngijl o030l — 4 JSCo 55114

oL;_g.wl GNP Do

295k o yeSl
4..'.3 5

bl 9 s3lwecly
S8 W,

N33l a3l

P gapalS g 2o 0 3550515

Al muigidls liyaiasgSt

Ol &_JLA." oolasw! O)g..o LSLQW"‘")ﬁ'iJ‘ u.»_QLO.w 9 oo @

la] el

VAT 00 YO

bt o35 s il s °

olsaes! (sagodaste

iR

Sl 9 (s3lwesly
s b,

H38lasi g3l

9 SVNEe
oan] bl

S 5malS g in 035815
lellbl ;5L 5

bLs
059y E9y —

6)91(':'“? y
Lo ;L5

VWAF g YO

S5 y4ol y

GRS

A58 o 9 kX

& lial gonl g Jow @
la3ls o9 ol g (adeine 2ol ©

Sokel olas odg
w8 g oolawl Solw

J=lye J5sS g gy 0 (S olw
o bSG ialew b li8le 5 JolS o

Sibw oo
s

= 1

LS}LW°°L:-,3, a

a9l =

bl ganl Jao sl olei =1 - IS

OL;'iw‘ GNP Do

o

o

(@)

o

£7 57

@y

ﬁ,.(),,.al Fna AL s

(e SSG Ly

_‘
{

H

-’

Slrl 5 (s3lweoly
a8 W,

N33l a3l

9 SR>

F3aalS w3 0353515
oleibl g yolid 5

VAT 00 YO

5

Blep o 9 ol

2333k Sl sl
Sl o (09,5 aslip aS

=233k i)l 2
(:A.!l})J 6J3J9 dual_;)_z ._\S

SRl s CeslgS)3 Jloged = VY SO
olsaes! (sagodaste

Sges ®

55l YY

bl 9 s3lwecly
a8 W,

N33l a3l

9 SR>

- RO VAT 00 YO
oleibl g yolid 5

B9 o § Jukd

NS Hloges @

GUI SyntaxMaker
1
1
Eval YYParser 1 YYLex
1 I I
1 L 1
PDGBuilder PINIRewriter PSNIRewriter
I I
1 ¥
GraphDrawer AProVE
1
GraphViz

(ko 5 loalid 55 30 l3dle 5 DI Jsges = 1Y JS2

olsaes! (sagodaste

£ 5 VY

bl 9 s3lwecly
a8 W,

N33l a3l

P gapalS g 2o 0 3550515

Blep b 9 kS

Lg)‘L.uooL:.& LgLas)’Lé ®

WL oL; 6998 9 o S Jdoss

o

cksl).».s L;.a.w‘g 6L®d‘; 49J.‘>4.$5)¢\.».LC;4.‘>)O ‘J)HS UL‘)} L_Q‘Jf ©

VAT 00 YO

C8 i 4 e e Sl gl aelip sl
Cd i a0 b > gl aal p gl g adl> 5 Ll

olsaes! (sagodaste

O

o

\taBIRA}

s e okt d 990 <Sla)b‘.)‘ [%‘)lao}lnw gb' 7

em
o ((gl 0L 4 sslwesly @
| —> JdVvda e . e
g‘_'/J by 697 g g9 S s @
- Bison 4 JFlex ¢la,lpl ©
-)|l awgd cuds adgi (slanS ws s ©
C b leaslp bl slaas adgs ©

Syl 9 (55lwoslyy

s b,

J38le 5 g3l L_;i""“"“ﬂ LSLQ“-é‘; L}J‘; L)M-’Lo-; ®
— dot :L; ¢ GraphViz |5l ©
oan] bl

@ VWAE 4 YO

PF3elS o2 9353413
far L

b
£

odlakut 3590 Safsl 9 Silwodly b5 ok

e 05 a3 ey S Salpg @
S b TokenMakerMaker ||| g RSyntaxTextArea ailsls ©

@ WWAE el YO

PF3elS o2 9353413 |
far L

S

1
I

bl
©f

=523l S5 Tadly Soxd

e

- doli p ool laas L do Soioen aile, Plos a4 @
gl SB35 (b e

B 4 Olasgiaaliy 5l golass 510,955k (585 9 (ot yai @

RO lee

@ WWAE el YO

PF3elS o2 9353413
Elellbl g)9lis

olsaes! (sagodaste \id)‘ Yy

bl 9 s3lwecly
a8 W,

N33l a3l

P gapalS g 2o 0 3550515

é:s')f %)?)U Ll el

S8 bl 2k ol o colaiul)50 SIS 51 S0 @
doaSs g boasy ;3 sy S g (Fo5an ©
25 slelwlss o g Dlynsd 4y del p cnlie 0,550 ©
amio bl o szl (il (gaieg S @
Solite 5 Lo b slacd 5 WacSs, 5 ooliczul ©
Lolesl 5 Lo pile ol ©
amao sl Ol e L85l ©

VFAE e YO oLty o] (ggatiazms daum 7 51 YA

te =) ===]
AFIATY,
=4

A FALJ‘J;&:L{_’-JL‘
(D SusS Ll

il gdia las-
9 Jol pae
ol Jles!

1,5 s WL ob;
daliyy Sunsly

295k pyeSl
4l 5

bl 9 s3lwecly
a8 W,

N33l a3l

9 SR>

i

F3aalS w3 0353515
oleibl g yolid 5

315 S Lo Mo

Y WL Rewriter 1.0

=)

@ Make Program Dependence Graph
Rewrite in Progress Insensitive mode

Rewrite in Progress Sensitive mode

ur program is
tactically correct

» Control Flow Graph is
created.

is

| Clear Log

Current File Mame: 09whileifelse, wl
1 program;
2 inL 11 , 12;
3 inH hl, h2;
1 while 11 > 12 deo

if hl > 3 then
h2z = h2 + 1;
11 = h2;
outlL 11

else
12 = 12 + 1;
while 12 > 4

or false do

hl] = hl - 1;
outL 12
done
endif;
outlL 11;
outL 12
| [Mew File || Browse File || Clear

L@ |

-~

m

\WAF e YO

SRl s (SES s Bl sl gl HIY S

oliydex! (sagotomo duw

5 5 ¥4

C‘:Qc:)
=4
F-
ﬁ,.(),,.al Fna SN sl
(D SusS Ll

bl 9 s3lwecly
a8 W,

N33l a3l

9 SR>

F3aalS w3 0353515
oleibl g yolid 5

¥ Wi Rewriter L0 B0

() Make Program Dependence Graph
@ Rewrite in Progress Insensitive mode

() Rewrite in Progress Sensitive mode

Graph is

Clear Log

VAT 00 YO

Current File Name: 03assign.wl

SloS Sy l5 Tl y Sl

T

program;
inL 11;
inH hl;
11 = hl;
outlL 11;
outH hl

-

|£| PINI Rewrited ... | = = || C Source Code - 03assign.wl =8 = |£| PDG - 03assign.wl =8 X
1 program; #include <stdio.h> =
zinL 11;

z inH hl; ine TRUE 1

4/11 = hl; e true 1

s if TRUE then ine FALSE O

& outlL BOT ine false 0

7 else

8 outL 11 E
o endif; int main() { int 11; ./ type: low
10 canf ("%d", &11);

11 outH hl S/ type: high

; int hl;
scanf ("%d", &hl);

11 = hl
printf ("%d\n",11);

ETRET

; printf ("%d\n",hl);

A7 type: lov

7/ type: hic_

< [

(2

[New File][Browse File][

Clear]

SRl s (SES s byl ol TV S

atiia>‘L5A%nA¢>m [SVow]

it AR

£

P gapalS g 2o 0 3550515

D

E?

VAT 00 YO

SNley 09l 9 adlaindly
awls a3l g, 5l ool @

o905l 9,lge adgi g (i @
WL ol cilise sla s L
J5165 pae e b s cilie slacdls

o2 g e sl >

olsaes! (sagodaste \id)‘ AR

9 SR>

£

F3aalS w3 0353515
oleibl g yolid 5

VAT 00 YO

02basic.wil

SNleys Ol 9 il sl

program;
inL 11;

inH hl;

outL 11;

11 = hl + 2;
outH hl

program;
inL 11;

inH hl;

outL 11;

11 = hl + 2;
outH hl

Jsl o3l 2590 —10 S
aL;._g.ml GNP o

75y

P gapalS g 2o 0 3550515

03assign.wl

program;
inL 11;
inH hl;
11 = hil;
outL 11;
outH hl

VAT 00 YO

7 outH hl

#3 outlL]

program;
inL 11;
inH hl;

411 = hl;

if TRUE then
outL BOT
else
outL 11
endif;
outH hl

P33 0303l 9,90 VPSS

aL;._g.ml GNP o

5 5l vY

3 {!"Y
JITE RS 'o .' ® o ‘T ‘T L '
i Dy o I g
o
program;
07Ifelseadvanced.wl oL 1. 125 inH hL, ha;
program; if 1'((11 == 9)) then
-, inL 11 , 12; 11 =2 + 4 + 11; outL 11;
l inH hl , h2; if hl > 6 then
» if 1(11 == 9) then 11 = 6;
11 = 2 + 4 + 11; if ((!(11 == 9)) or (!(11 == @) and (h1
outL 11; > 6) and (!(11 == 0)))) then
if hl > 6 then NOP
11 = 6; else outL 11
outL 11; endif;
outH hl outH hl endif
- endif else
else if 12 > 3 then
if 12 > 3 then 11 = 11 + 1; outL 11; outH h2
11 = 11 + 1; else
outL 11; 12 = 2 + h2;
outH h2 if (1(12 » 3) and !(!(11 == @))) then
else outlL BOT else outlL 12 endif;
12 = 2 + h2; outL 11
H58lp 5 ool outlL 12; endif
outL 11 endif;
. endif if (!(11 == @)) then NOP else outL 11 endif;
PYTXCH v endif; if ('(12 > 3) and !(!((11 == @)))) then
oanl slals outL 11; outlL BOT
outL 12 else outL 12
endif

poms O3a3l 990 —VY S g
\YAF 00 YO olg e (sagedesme dpw \tZB Al

F3aalS w3 0353515
oleibl g yolid 5

58y g 9 aboslaiadly

outL | outL | outH | outL | outH | outL | outL | outL | outL

11 11 hil 11 h2 12 11 11 12 .
11 (12| hl]|h2], .)) i _))) i Violation
(line# | (line# | (line# [(line# | (line# |(line# | (line# | (line# | (line#

o en
- 6) 9) | 200 | 15) | 16) | 19) | 20) | 23) | 24)

0{4/0|0| - - - 1 0 - - 1 4
No
ofalafa] - | -] -2 |2]|-|-]1]4
0[{2|0|0 | - - - - - 2 0 0 2
Yes
o211 - - - - - 3 0 0 3
11071 7 6 / - - - - 6 0
Yes
H38lasi g3l l O 6 l 7 B - - - = = 7 O
P 09031 590 sl (Sl 29,5 5 (539,9 Aiges =V Jga
9 SUHRe2
oan] bl
,.WQ WAY e YO olsaes! (sagodaste \i4)’\ Yo

P gapalS g 2o 0 3550515

58y gl 9 abolaindy

outL | outL |outH [outL | outH | outL | outL | outL | outL
0 P P R I ¥ A B N E O 2 NS
(line# | (line# | (line# | (line# | (line# | (line# | (line | (line# | (linest | O oo
6) | 9 |10 |15 | 16) | 19) |#20) | 23) | 24
olalolol - | - -T2lol-1-1-134
No
olalala] - [- -T2l -]-1-1G4a
01200 | - - - - - |BOT| O 0 |BOT .
0
O12(1(1] - - - - - [BOT| O 0 |BOT
110|711 7 - / - - - - - 0
No
wlolelal 7] -1 -]-7T-1T-1T-7-1o
pom 3031)90 S pig 4y ules e Sl oud g3l sl Sl 29,5 5 53959 Aiges — ¥ Joux
VWAF 0 YO NETRVRS VIRV \taBIArd

9 SR>

F3aalS w3 0353515
oleibl g yolid 5

| Iwhilewhileconcat.wl

SNleys Ol 9 il sl

program;

inL 11;

inH hl , h2;

while 11 > 0 do
11 = h2 + 11

done;

while hl > 11 do
11 = 11 + 3;
outL 11

done;

outL 11;

outH hl

—

el QS*)'T S0 —VA S

VAT 00 YO

program;

inL 11;

inH hl, h2;

if h2 < @ then
while 11 > 0 do

11 = h2 + 11

done

endif;

while hl > 11 do
11 = 11 + 3;
if TRUE then NOP
else outlL 11
endif

done;

if TRUE then NOP

else outlL 11

endif;

outH hl

olsaes! (sagodaste

757V

P gapalS g 2o 0 3550515

58y gl 9 abolaindy

outL I1 outL |1 outH hl _ _
11 | hl | h2 _ _ _ Violation
(line# 9) (line# 11) (line# 12)
0 1 0 3 3 1
Yes
0 5 1 3,6 6 5
1 0| -2 2 2 0
Yes
1 5 | -2 2,5 5 5
111 1]0 diverge
Yes
1 1 | -2 2 2 1
por 53051 390 dalyy slo 29,5 9 Wasog 5 Aiges — ¥ Jouxr
VFAE e YO oLty o] (ggatiazms daum ¥ 51 YA

P gapalS g 2o 0 3550515

58y gl 9 abolaindy

outL |1 outL |1 outH h1l _ _
11 | hl | h2 _ _ _ Violation
(line# 9) (line# 11) (line# 12)
0 1| 0 - - 1
No
0| 5 1 - - 5
1 |0 | -2 - - 0
No
1 5 | -2 - - 5
1 (1] 0 diverge
No
1 1 | -2 - - 1

ook 05e5] 350 S pien 4y ele 8 Sl oul cun 53l adly sla 25,5 5 asds g wiges — F Jgu

VAT 00 YO

oL;_g.\.\.oo-‘ GNP o

5 574

o A3t O9all § aoflaind

EEECCI
" outL 11 outL 11 outH h1 o
11 | hl | h2] _ _ Violation
- (line#9) | (line#11) | (line# 12)
0 1 0 - - 1
No
vl T : =
1 0 -2 - - 0
No
B ' 5
1 1 0 - - 1
No
o 1 1 -2 - - 1
i el Osesl 9y50 iy 4 pelas Sl ol nnsiil aslp sla oz g 3 g Wasog 5 Aiges — O Joux
9 SUHRe2
oanl slals
”‘WMQ 1¥AF e YO olyos] (gagecame At

2)

,
=
AS

—-
¥ L

Lt

- - in - - in ~ [— - 4

9 SRR

P gapalS g 2o 0 3550515

.
&
g.
\n.=

VAT 00 YO

S Ro>

C8 iy 4y ol ©

C plin & ol e ©
ol o gisl g WL (L5 @

doli p Slg I 5 ©

2 93b sl 5ol

. “él‘ EX 5 .

Il osesl g gslwesls

olsaes! (sagodaste \id)‘)

x _ x _ ~ - = - 4

9 SRR

.
&
g.
\n.=

P gapalS g 2o 0 3550515 /

VAT 00 YO

ol S sls

zly g A i mgaslp slagl; @
0wy LgL:b)l;I}L.u Lg‘)b LSLQQL.’} ©
&b 5l Slasis
e o g NS
Faos sle S
oMLg)’L»oaLd)‘J.J Sgus @

o

e
alssl> ©

&)l
U

[\] FB. Schneider,].G. Morrisett, and R. Harper, “A Language-Based Approach to Security", in
Informatics - 10 Years Back. 10 Years Ahead, Springer-Verlag Berlin, Heidelberg, 2001, pp. 86-101.
[¥] D. Volpano and G. Smith, “A Type-Based Approach to Program Security”, TAPSOFT '97
Proceedings of the 7th International Joint Conference CAAP/FASE on Theory and Practice of Software
Development, 1997, pp. 607-621.

[v] J.A. Goguen and . Meseguer, “Security Policies and Security Models”, in Proceedings of IEEE
Symposium on Security and Privacy,Vol. |12, IEEE, 1982, pp. | -18.

[f] M.R. Clarkson and FB. Schneider, “Hyperproperties”, Journal of Computer Security - 7th
International Workshop on Issues in the Theory of Security (WITS'07),2010, pp. 1 157-1210.

[6] A. Lamei and M. S. Fallah, “Rewriting-Based Enforcement of Noninterference in Programs
with Observable Intermediate Values”, submitted to Journal of Universal Computer Science,
2015.

[#] V.N. Venkatakrishnan, W. Xu, D.C. DuVarney, and R. Sekar, “Provably Correct Runtime

Enforcement of Non-interference Properties”, in Proceedings of the 8th International Conference
on Information and Communications Security, ICICS'06, Springer-Verlag Berlin, Heidelberg, 2006,
pp- 332-351.

[v] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly inlining of dynamic security monitors",
Computers and Security-Silver Linings in the Cloud, 2012, pp. 827-843.

Q YAF 00 YO

F3aalS w3 0353515
oleibl g yolid 5

oliyas! (cogodass dums f7 5l FY

[A] G. Le Guernic, A. Banerjee, T. Jensen, and D.A. Schmidt, “Automata-based confidentiality
monitoring”, in Proceedings of the [|Ith Asian computing science conference on Advances in
computer science: secure software and related issues, ASIAN'06, Vol. 4435, Springer-Verlag Berlin,
Heidelberg, 2007, pp. 75-89.

[4] A. Russo and A. Sabelfeld, “Dynamic vs. Static Flow-Sensitive Security Analysis”, in
Proceedings of the 2010 23rd IEEE Computer Security Foundations Symposium, CSF '10, IEEE, 2010,
pp- 186-199.

[\-] G.M. Kevin W. Hamlen and FEB. Schneider, “Computability classes for enforcement
mechanisms”, ACM Transactions on Programming Languages and Systems, Vol. 28, 2006, pp. 175-
205.

[V\] J. Ferrante, KJ. Ottenstein, and J.D. Warren, “The program dependence graph and its use
in optimization”, ACM Transactions on Programing Languages and Systems, Vol.9, 1987, pp. 319-
349.

[\¥] H. Mantel and H. Sudbrock, “Types vs. pdgs in information flow analysis”, in Logic-Based
Program Synthesis and Transformation, Springer, 2013, pp. 106-121.

[\v] “JFlex”, Available: http://jflex.de/ [Sep. 10, 2015].
[1\f] “Bison”, Available: https://www.gnu.org/software/bison/ [Sep. 10,2015].

FipagelS gt 0358013 \Vc\\c 1.Q,,a V() OL,_)A,Q)‘ 6._6/3__6_7_4 __,_._.; f'?)“ ff
lellbl g59ls 5

i

F3aalS w3 0353515
oleibl g yolid 5

&y § b

[vo] K.M.Anderson, Class Lecture, Topic: “Lecture 15: Control Dependence Graphs” CSCI 5828,
University of Colorado at Boulder, Spring 2000, Available:
http://www.cs.colorado.edu/~kena/classes/5828/s00/lectures/lecture | 5.pdf [Jul. 25 2015].

[\#] T. Teitelbaum, Class Lecture, Topic:“Lecture 24: Control Flow Graphs” Introduction to
Compilers, Cornell University, 2008,
http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf [Jul. 25 2015].

[\v] C.N. Fischer, Class Lecture, Topic:“The Program Dependence Graph: Control Flow and
Control Dependences” S502 Compilers, Fall 2008, Available:
http://pages.cs.wisc.edu/~fischer/cs701.f08/lectures/Lecture | 9.4up.pdf [Jul.25 2015].

[VAl' S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-sensitive security”, in
Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS '12, ACM,
2012, pp. 881-893.

[ya] Roger S. Pressman, “Process Models” in Software Engineering: A Practitioner’s Approach, 7 ed., Mc
Graw-Hill Higher Education, 2010, pp. 39-41.

[v-] E. R. Gansner and S. C. North. “An Open Graph Visualization and Its Application to Software

Engineering”, Software — Practice and Experience Journal, vol. 30, No. | |, 2000, pp. 1203-1233, Available:
www.graphviz.org [Aug. 12 2015].

[¥\] “AProVE”, Available: http://aprove.informatik.rwth-aachen.de/index.asp?subform=home.html
[Aug. 25 2015].

[y¥] “RSyntaxTextArea”,Available: http://bobbylight.github.io/RSyntaxTextArea/ [Sep. 04 2015].

FAE g YO ol el (5gedats da ¥7 5%

o s | x &
P © i a5 il gl b

w

F3aalS w3 0353515
oleibl g yolid 5

oliydex! (sagotomo duw A4)\ \td

